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Syracuse University (Department of Electrical Engineering), Purdue Univer-
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COMPUTER ROUTINES FOR USE IN SECOND-ORDER

VOLTERRA MODEI.ING OF F1I1

I. INTRODUCTION

Research described here consists of the development of certain computer

routines to aid Volterra modeling of weakly nonlinear systems [1], [2]. Volterra
series representation, a dynamic generalization of the familiar power series, is
ideal for representing devices and systems with frequency-dependent mild non-
linearities as in the case of a transistor. The technique has been applied to 2

the analysis of communication receiver response to radio frequency interference[3].
Other applications include intermodulation distortion analysis of transistor
feedback amplifiers 14], nonlinear characterization of IMPATT diodes and micro-
wave amplifiers [5], and analysis of channels with soft limiter.

Rome Air Devlopment Center has in the recent past supported several
efforts to put this analytical tool to use in the electromagnetic interference

and compatibility field. (In practical terms one of the major outcomes of the

efforts is the IAP program, a computer program for the prediction of Intra-
System Electromagnetic Compatibility). A current direction of interest is the
estimation of Volterra kernels of a system from its experimentally observed
input-output responses. Interest in this black-box approach arises for several
reasons, the most salient being cost effectiveness in testing, and simplicity
of resulting models for complex on-board communication systems.

Weiner and Ewen 111, (2] have provided an approach to finding the para-
meters of the kernels, specifically the poles and residues of the multivariable
transfer functions P (s. . The poles and residues of the linear TF,
H (s), are determinew using Jain s method [6], [7](pencil-of-functions identi-
fication method). Then, for somewhat larger amplitudes, where the quadratic
TF H (s s ) has non-negligible influence, the contribution y,(t) is determined
by subtraciing yl(t), the predicted response of H (s), from y~t). The poles

1 1of the quadratic TF are known in terms of the poles of the linear TF, so that
only the residues of I (s1 , s7) need be -- and in principle, can be -- deter-
mined. A similar procedure is adopted for determining the parameters of the 21
cubic kernel, and so on.

The computer programs presented in this report are:

IGRAM Program for black-box identification of a linear transfer
function using pencil-of-functions method. 

J

HPMINV High precision matrix inversion routine for use in deter-

mination of the residues of the quadratic Volterra TF.
j. Perturbation theory and iterative corrections are used to

enable accurate inversion even for wideband-system matrices.

S

F'
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II. PENCIl. OF FUNCTIONS METHOD FOR IDENTIFICATION

OF NETWORK TRANSFER FUNCTIONS

Determining the model of a network from its observed input-output responses

represents the inverse of the analysis problem. Interest in this arises from the

frequent need for a relatively simple mathematical description of the system so

that behavior for other anticipated inputs may be predicted up to acceptable

accuracies. Like the analysis problem, there are several approaches available

in the literature for the inverse, or, as it is often called, the "identification"

problem . To name a few, (a) Prony's method 18], (b) gradient methods, such

as Newton [91 and qua-,-linearization [10,](c) least-squares and generalized

least-squares methods [111,112],(d) maximum-likelihood methods 113],[14],[15].

All of tile methods stated above possess certain advantages and, as may be

expected, certain disadvantages peculiar to each parti-tular method. Stated

very broadly, sensitivity to noise, slow convergence to the solution, and ex- I-A

cessive computational complexity are some of the possible disadvantages. The 1

objective of this section is to describe in a semi-rigorous way the pencil-of-

functions identification method [7]. Further, in this section the method is

extended to the case where general first ordez -s, 11 (s) = (bs + c.)/(s+a)

are used in the processing system instead of ide. integrators (note that the

ideal integrator is a special case of this filter; set bi = ai = 0). A high AZ

accuracy FORTRAN program, developed for the case of ideal-integrator processing

units, is also presented.

The method offers the advantages of mathematical simplicity, closed-form

solution to the problem, which is optimal in the generalized least-squares senseI and suboptimal in the strict least-squares sense, and robustness to noise. The

disadvantage of the method is that the variances of additive noise, when present,

must be determined in a separate experiment in order that unbiased parameter

estimates may be computed.

-A-



2.1 THEORY i

The problem of identifying the transfer function of a network from its input- I

output responses can be formulated in 
discrete-time domain as follows. Given the

pair x(k), y(k) (or noise-corrupted versions of these; call them u(k), v(k)) find

the transfer function 5(z) that produces a response matching y(k) (or v(k)) when

excited by x(k) (or u(k)). More specifically, this involves determination of the r
parameters ai, b. 

in 

K
Y(z) = 1(z) X(z) A

b +bz +... +bzn
(= 0n1 ~ ) X(z) (1)

-ln1 + alz +... + a zn

from experimental input-output data. Note (1) can be written in time domain as

n n
y(k) = - aiy(k-i) + Z b. x(k-i), y(k) =0 for k < 0 (2)

i=l i=O

A. Measurement Signals

Before proceeding with the solution of the problem via pencil-of-function

method, let us note that (2) can be written as 
1=

[y(k) y(k-l) . . . y(k-n) -x(k) -x(k-l) . . -x(k-n)] 0 0 (3)

or, more concisely,

_f(k) 6 = o (4)

where the 2n + 2 dimensional vector f(k) has the obvious definition and the vector

. 6O., also 2n + 2 dimensional, is given as

SEquation 
(4) represents a geometrcal 

constraint upon the 
vectors f(k), namely 

Ul

-- , that they are all orthogonal 
to .

It

To cast the problem of identifying _ into a generalized least-squares

V3 i



problem consider the measurement system of Fig. 1. The matter of choosing the

first order filters which make up the measurement units M4 (z) will not be

considered here. It will suffice to say they must be chosen so that the

cuttf x frequencies of M,/%z) span the frequency range of interest (i.e. they are

spread in the pass-band of the network under test). Kegardless of the

choice of the measurement units the following useful observation arises.

Let

and deine the matrix

'I C0 1  'On!c0

C c c
10 11 In

C (6a)

I c c A-
LnO nl nn3  fz

where c.i are the coefficients of the polynomial I

n -1n

Ijr lFi (6b) S

v(k) l-P z y-kli- (k) I-P Z_ y (k)O 2 . . .~ n

1-y, x(k -

x0( l~1_p 1 xk T 1P~Ixk

Il-Q~ lQ
1 -nlQz Q

W 14Aesrmn vetoT 9 i) .. y Wk -x (k) -x; X(k)l ( k)

First order filters ;j WZ = 0-P z1'( Q

Fig. I. Metasurement svstemIi
AU



Also define the vector y henceforth called the synthetic parameter vector, as 11I

= [j (7a)

aK[~] (7b)I
-l

C 1- (7c) :A

Then, it can be shown that the measurement vectors Pk are orthogonal to the

synthetic parameter vector. The proof will be given in subsection 2.1C.

B. Solution

The problem of determining the synthetic parameter vector y can be shown to

reduce to finding the cofactors of a gram matrix. Specifically, it can be shown

by use of the pencil-of-functions theorem [6 ] that the vector y can be obtained

in the following way:

1. Form the Gram matrix [16]

-K-z
G = t (k)j (k)

k=O

where N = 2n + 2

AN
2. Find the diagonal cofa-tors of GN; call them A..

3. Then~T
Y= r

Av---I I ['1 , - -] 1!
110

Finally, using the transformation (7c) we have the desired parameter vector e C*

C. Proof of Measurement Filter Theorem

The relationship in (1), or equivalently (2), may be written as

| T bTa C Y(z) b X(z) (8)

whe re

a [ a T......

b = [bb . . . .. bl'
-- 0 n

- -n T.,' II z - . . . . . z [



On the other hand the measurement signals have the following represen-

tation. Consider the output measurement signal yi(k); its transform is

Yi(z) M i(z) Y(z)

i I-P z -

k=i I-Q-z

i n

DZ) - (H-p z ln (l-Qz -z Y(z)
£=iz =i+i

D(z) oi ii i (9)

where

D(z) = n - Qz (10)
Z=i

K: and the numbers c.. are the same as defined in equation (6). Now the output

measurement vectors may be written as

T 1 TY(z) = [yo(z) . . . yn(Z ) ]  D(z)

F where the (n+l) x (n+1) matrix C = [cji] is given by the numbers ci4 defined

above. In a like manner, we have

X(z) = [X0 (z) . . .X(Z)I T = _l cTC X(z) (12)0 n D(z) -
We can now state and prove the measurement filter theorem.

Theorem - If the signals y(k) and x(k) satisfy (8) for some parameter

vector (a, b), then the measurement vectors satisfy the orthogonality

conditfon

T T
[T T] [(k) = 0 for all k (13)

k*_(k)J

where

= Ca (14) 1
_=C b (15)

Proof. The matrix C can be shown to be nonsingular. Therefore we can rewrite

6



(8) as

(C~ a) c (~ Cb) c~.X

or

T I. T TYr) d 1 1'

Upon sub stituting (11 ) anid (121) thiS equatioll yI.'Ids

The t'esult sought by the theoreni IS NOht tOd lint 10ditlC 11 upon taking the inverse

transfCorm.

"1AM

7~
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2.2 APPLICATION EXAMPLES

i EXMIPlF I
I s a first example of the identification routine, data from the transfer

function

(l-I -(lo) (10) (10)4 s+7(106) s+7Ul07) s+(lO+j25)l0 6  s+(lO-j25) 06

was obtained. The input driving function was a square-wave followed by a de-

caying exponential. Two cycles of square wave with period O.051isec were used,

followed by the decaying exponential with time constant approximately equal to

O.051isec. This input was selected based on apriori knowledge of the network

behavior. The spectral content of this input should supply a sufficient amount

of energy to the fast mode (s = -7 x 1075 and to the slow and oscillatory modes

for accurate identification.tA
Five hundred points of data were used (MPI=500) with a sampling interval

A 0.0020sec. The option IREM =1 was used in this example because direct trans-

mission could not be assumed. A fourth order model* (N=4) was desired for th~is

networv. The identified poles and residues of the model are given below, to- ii
gether with the actual (it4(s)) poles and residues. M

It (S) Poles Identified Poles It 4 (s) Residues Identified Residues

-7.x106 -7.0x10 6  1.0(106) 1.0(106)

-7.xlO
7  -7.OxlO

7  30.0(106) 30.0(106)

-(10.+25)106  -(l0.0+j25.0)10 6  1.0(106) 1.0(106)
66 6 6

-(10.-j25)10 -(I0"0-j25.0)l0 1.0(1065 1.0(106)

As seen, tho identification of the transfer function was very accurate, and

the corresponding mean-square and root-mean square errors for this identificatlontt

are both 0.0%. Plots of the input-output data and the actual and model responses

are shown in Fig. 2. 
WIN

* A rational transfer function with an nth degree denominator is referred here as

being of nth order.
8
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0.40 - - - XREc(k)
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Fig. 2 Fourth Order Model Identification of H4 (s)
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Example 2

We examine the applicability of the identification technique to responses

obtained from a wide-band transistor amplifier circuit. The schematic and

equivalent model of the circuit are shown in Fig. 3.

0.01 4Wf 3 5Pt 4o.01VIf

- -i.' V u 1 kU0P I U ' V.2
Z, V2

(a) (b)

Fig. 3. (a) Schematic of common emitter amplifier circuit

(b) Equivalent circuit model

As shown in Appendix C, the network transfer fut.ct ion is
V,,(S) (Q7 2 6

V (S) 6 6 66
I (s+.033(10 ))(s+.080(10 ))(s+25.2(10 ))(s+1205.1(10 )

Thle network function can be identified successfully only by performing

separate tests in three different frequency regions:

(1) Low frequenc:' region (L)

(ii) Mid to High frequency transition (1,11)

(iii) High Frequency region()

A discussion of these three regions is given in Appendix C. Here we shall foctis

primarily onl the results of identification.

A (i) Low frequency region

Ani adequate low frequency description of eq. (17) is given by

b-.. I .. ,, - (21 4) 2(

(s+.03-'(10)(+.SO0(O ))

It is theref Ore des irahie that we seek a seconid-order (N=2) modelI
A ~ of the network given by eq. (17). Tihe input used is a single triangular pullse

* n practical applications, such approximationis will of course nlot be available.

~ critical frequeneies of thle systeM.21 10
ti

41 V
&*



sampled at A 0.25ps are used for modeling. The option IREM = 0 was used

because our low-frequency model will exhibit direct transmission.

The computer program IGRAM yields the followling low-frequency model: i Z

*6 6
H (S) - 20.125 -(s-O.0015(10 ))(s+O.0012( 10 )) (19)

(s+0.034(106))(s+0.075(106)) 

Comparison of the identified model, eq. (19), with our low frequency approximation

(eq. (18)) shows close agreement. The rms error between the measured network time

= response and the model response is 1.206%. Plots of the input-output signals and

of the actual and model responses are given in Fig. 4.

ii) Mid to High frequency transition

As discussed in Appendix C, an adequate mid to high frequency transition

description of eq. (17) is given by

53i.,1 (10 6)

..(s. . (
(s + 25.2(106))

which is a single pole function. Thus, we wili attempt to model the circuit

with a first-order transfer function (N=I). Since this approximate description

(eq. (20)) does not exhibit direct transmission, IREM j 0 should be used in the

program. For this identificat, on, IRFN = I was selected. For reasons mentioned

in Appendix C, bias was assumed present (IBIAS = 1) on the data. Five hundred

points (MP1 = 500) of input-output signals, sampled at A = O.01sec, were used.

The excitation used was a narrow band signal with a center frequency
©6

near the critical frequency (s=-25.20]0 6)
The computer program ICRAM yields the following mid to high frequency

transition model: r

~~520.0(1
. . .. ... .... ... (2 1)

. -: il " " ( s + '_ 4 .9 2 0 ( 1 6 )

The rms error between this model a.d the actual zetwork respon (obtained from

the original 4th order transfer function) is 1.99'%. A graphical comparison is

given in Fig. 5.

A:

II

- -. I



A

iii) High frequency region

An approximate high frequency description of eq. (17) is shown (Appendix C)

to be

8(107) (S-8000(10 6 )) (22)

(s+25.2(10 ))(s+1205.1(10 )It

i "which is a two-pole function. lie will theretore attempt to model the

circuit with a second-order transfer function (N-2). Direct transmission

cannot be assumed, so that IREM = 1 was used for the model. Five hundred

points (MPI = 500) of input-output signals, sampled at A - 0.00025tisec were

used. A narrow-band signal with a center frequency of 6300 Mrad/sec was

used for network excitation.

The computer program yields the following high frequency model.

2.79(10 6) ((s-19060(0)j (23)

H(s) 6 6 (3
(s+25.7(10 ))(s+1139.5(106))

The rms error between this model and the actual network response is 0.919%.

A graphical comparison is given in Fig. 6.

We have now obtained a description of the networ" behavior in the three

frequency regions of interest. The models obtained may be pieced together in such

a way as to synthesize the overall behavior of the system. Omitting the details

involved, the following model may be obtained from eq's. (19), (21) and (23)z

62216 6 6 6
62.2(10) (s-.0015(10 ))(s+.0012(10 ))(a-199060(l06))

(s+. 034(I6))(s+.075(1 ))(s+24.9 (106)) (s+1139.5(06))

Comparison of this model with eq. (17) shows favorable agreement.

ji

o



Inu ? t tt 0o4siSnal4 r H,#) b) Comparison of model and

network responses

Fig. 4. Second Order Modol Tdentification of H L(s)

- .*..,.s

' : * : ;, , t* I. It ' + ' '

it l, P , iJ I 41

0 14'y

a) Input - Output b) Comparison of model and
signals for ,H,,(e) network responses

Fig. 5. First Order Model Identification of HH()

Ogl ,I - • &tl(1) t

)', ,,:. 4.& ,< Ap, .. . I~ ,,
II' * r

si6001 fo ewr epne13

jl' )+ '  4.' ..,.... .. ' + . ... . .-

a) last'tl input - output b) Comparison of model and
igma] for liH(p) netvork rosponmee

FLI, 6. Second Order Model ldentifiLcati:on of-ll)
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2.3 Program Description

This FORTRAN IV program determines a linear model (transfer

function) of a network from recorded laboratory responses. The linear model is-

obtained via the pencil-of-functions method discussed in Section 2.1. The

program has certain features which are discussed below.

Network modeling involves the determination of the coefficients a. and

of a rational transfer function of the form

+ l + +. a + n8Ms

H(s) 0 n (17)
Ci+ s + + a s
o n

such that the output of this model to a given input will approximate the actual

network output to the same input. Equivalentlyl in discrete time [17] we wish to

determine the coefficients ai and b. of a function of the form

-l -n
b + bz + ... + b z

H(z)
a+ alz- + .. + a M-

o n

If the network under study is assumed to have direct transmission, the

numerator coefficient b is nonzero. This choice of model structure is imple-
0

mented by setting IREM = 0. When direct transmission cannot be assumed (i.e.,

it is known on physical grounds that the impulse response of the network wiil 5

not contain an impulse), then b should be set to zero. This is accomplished

with IREMWO. For example, if IREM=l, the coefficient b0 in equation (18) is

set to zero; for IREM=2 the coefficients b0 and b I are set to zero. It is 4a

recommended to use IREM=I whenever direct transmission cannot be assumed.

All calculations are performed in discrete time; finally !(z) is transformed '>y

means of a pulse invariant transformation*(IZTS=2) to the corresponding

continuous time model H(s). After modeling has been accomplished, the
* See Appendix D

11.
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Normalized mean-square error (And its square root) comparing the model and actual =
network responses are calculated (subroutine ERROR). These errors are calculated M

as shown below. 2
Z [x(k) - X k )

N.M.S.E. kmoe
Z x2 (k)
k

R.N.M.S.E. 'Nd..S. E.JI

Another feature of the program is the capability for bias-removal from
the recorded laboratory responses (IBIAS=l). This feature allows consideration
for bias that may have been introduced through the laboratory measurement

system to the recorded output-input data.

Finally, a plot option (IPLT) is available. When IPLT=I, two sets of r
i plots are given. The first shows the original output-input data measured

from the network. The second plot contains the original network response and

- - the identified linear model response. This plot allows visual inspection of
the closeness of the model fit to the actual (desired) response.

To enable the test engineer to effectively use the program, a description

of the input data cards is given below.

N
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INPUT DESCRIPTION

CARD #1 The first card is a title card. Columns I through 80 are
available for an alpha-numeric title.

CARD #2 Option card containing three variables

Variable Name Description Columns

(Format)

N(15) Order of the system 1-5

MPl(I5) Number of data points 6-10
(output-input data)

IPLT(15) Plotter option; 11-15
IPLT = 0 no plots ii
IPI.T = I plots on line printer

CARD #3 through CARD 12+NOUTJ
NOUT = [(MPI+7)/S], where [X] is the truncated

value of X.tF
The output data is entered on these cards in
8F10.O fields.

CARD #[3+NOUT] through CARD 12+NOUr+NIN]

NIN = [(NP!+7)/8), where [XI is the truncated
value of X.

The input data is entered on these cards in
8F10.0 lields.

*CARD #[3+NOUT+NINI Second option card containing six variables.

Variable Name Description Columns
(Format)

N(15) Order of the system 1-5

NPI(IS) Number of data points (output-input data) 6-10

ISKIP(I5) This variable determines the sequence of points 11-15
plotted on the printer. If ISKIP = 1 every V
data point is plotted, and if ISKIP = 5 every
fifth point is plotted, etc.

1REM(15 Variable used to specify model structure for the 16-20

identified system. If direct transmission is
assumed, iREM=0. For IRDIm, the first m terms V
(in ascending order) of the model numerator
polynomial are set to zero. It is recommended
IRE'I=I when direct transmission cannot be assumed.

*At first glance, this card may seem partially repetitious with CARD #2.

However, when multiple identification runs on the srme output-input data
are desired, then more than one such option card may be placed here, with
the option variables changed as desired (for instance, a run on only part

of the output-input sequence may at times he needed).

- L=A - 16
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IBIAS (15) Bias-removal option 21-25

IBIAS - 0 no bias is assumed present on the
output-input data.

IBIAS = 1 bias, assumed to have been introduced
by the measurement system, is

removed before identification is
performed.

DELTA(F5.O) Sampling interval 26-30

END OF FILE CARD

I.

A listing of the FORTRAN programs used is given in Appendix A .

a V
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III. COMPUTER ROUTINE FOR HIGH PRECISION INVERSION OF

SECOND ORDER VOLTERRA RESIDUE MATRICES

The determination of the residues of the quadratic TF, H2 (sls), in- V
volvei the solution of a set of linear equations. Unfortunately, tie number
of equations involved are large, for example 12 [2] even for a modest single I
pole-pair situation (i.e., where the linear TF has two distinct poles).
Solution of these equations can lead to computational errors unless extreme
caution is exercised in the inversion of the associated matrix. In fact the
problem is further aggrevated in cases where the system is wide band, i.e.,
when the poles of H (s) are spaced several decades apart. In such situations,
the poles of H (s , ) involve sums and differences of the linear TF poles
which can resuit Inp recariously close values. For example, if

= 50 radians/s

A2 = 50 radians/s
2 I-

then

A1 + A2  50.00005 Mradians/s

1 - A2 49.99995 Mradians/s
1 2

This in turn causes the associated columns of the coefficient matrix corre-
sponding to these poles to be almost scalar multiples of each other. The
matrix thus becomes nearly singular, or highly ill-conditioned to invert.

The program presented in this section is designed to deal with such
wideband cases, and more generally, to invert ill-conditioned matrices where UK
ever they may arise. It is hoped that by mastering the various capabilities 1 9
of this routine the analyst can cope with almost all situations of practical
interest.

The program possesses the following features which enable high-precision
inversion:

Adaptive Scaling
Application of Perturbation Theory to Ill-Conditioned Matrices
Iterative Correction

Before discussing each of these in detail. it is useful to define the

term "ill-conditioned" matrix - We will call a matrix ill-conditioned
if (a) the rows (or columns) of the matrix are nearly dependent, (b) "small"
changes in one or more entries of the matrix result in large changes in its
inverse, or (c) the nonzero entries of the matrix differ widely by several
orders of magnitude (and remain so even after appropriate scaling has been
performed)[181, [191, [20]. Note, the above conditions are not Mutually
exclusive.

18 =



3.1 ADAPTIVE SCALING,

In many applications the entries of a matrix differ widely in their respec-

tive sizes. For a linear system of equations this situation arises when the A
values of the (unknown) variables are orders of magnitude different and/or the ,

various equations have right-hand-sides which are orders of magnitude different.

This situation can be remedied in many cases as follows. Denote the matrix

of interest as Then it is possible to factorize A as

S A1  PAQ

L g where PandQare suitable diagonal scaling matrices [19 The following method

was developed to obtain the diagonal matrices P and Q, and hence the new matrix,

A.

The diagonal entries of matrix P are successively computed from the product

of all "significant" terms in the successive rows. The term "significant" crie

be specified by the user (in the examples presented here at)y entry greater than

15 orders of magnitude below the largest entry in the row of interest was con-

sidered significant);a default value of 15 orders of magnitude is assumed. Then,

the P th entry of the diagonal matrix P is computed as the (n )th root of the
ii i

magnitude of the aforementioned product, where ni is the number of terms in

the product.I

tyhe scaling of the ith row may be stated mathematically as follows; Let

,= MaxABS(Ao),, [largest entry of ith row]
i ~ 1 0 -m thehl ih

10 [threshold for ith row (m choo.eu by the user)-

(A )..: ABS(A ).> [qualifying entries of ith row]0 0~ o j- i A

Then nube of qualifying entries in ith row~~~Then 3 ._

P = it ( ). [ni
.i qualifying]ot '

entries

I
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-At tis point, we have factorized matrix A Into two matrices,iIl.e., A

0 0

ol io

It should be noted that in certain Cases, the above row scaling w1l suf-

fi ce, aid firt her Scalliug m1ay not be necessary. However, In gelleral, Ithe

above process may he repeated, this t tite uilizing _co llumn scaling. Spe-

efficaily, the oolumn sea llng involves faetorlzing A1 stich that A1  A Q ,

where Q is diagonal. The entries of A are obtained as

(A) (A, i = 1 . . .(3)

The entries of the scaling matrix Q are chosen in the same manner as those of

I1, except that columns rather than rows (of A1 ) are examined.

Utilizing this technique, the desired Inverse is seell to he

A Q A p (4)
0

Fxalnple 1
0.10000000 F+03 0.20000000 E-04 (1.29999999 E-01l

A°  0.19999989 E+0b 0.40000000 E-01 0.60000000 E+02

L-O.10000000 .1+10 0.10000000 E+03 0.0

Inspection of matrix A shows that its entries differ widely in relative
0

magnitudes; in fact ther is a diffrreece of fourteeni orders of magnitude.

Therefore, scaling can hi u.,d, vieldii% the following: AO " PA PAQ, wherer 1
0. 391486768E- ol 0.0 0.0

P 0.0 0.78297339E+02 0.0

0.0 0.0 0. 3i1627761:+06

Row Scaled 0. 25543647E+04 0. 51087295E-03 0. 7663094 3E+00

Matrix, A, i 0.25543639E404 0.51087304E-03 0. 70630956E+00

-0.316227761:+04 0.316227761z-03 0.0J

Q.0 0.43538684E-03 0.0
[0.07264E 0.0 0.76(,309491-40 101

Row and votumn scaled matrix,

20 I
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0.93131018P'+00 0.11733771E+01 O).999999910E:+O'1

A 0.93130987E+00 0.11733773E+01 0.10000001E+01

-0115295251401 0.726314477E+00 0.0

Now, A = Q A- p-l, and the inversions yield:o

0.20000000E+05 -0.10000000E+02 -0.54977761E-18-1

A = 0.20000000E+12 -0.10000000E+09 0.99999999E-02
0

-0.19999996E+09 0.10000000E+06 -66666666E-05

The product A (Ao) - 1 is given by
0 0

0.l000000E+O1 -0.17053025E-12 0.26469779E-22'1
II IA (Ao)-I = -0.95367431E-06 0.l0000000E+01 0.54210108E-191

0.0 -0.95367431E-06 0.IO000000E+OI V

Checking Product of A and Its Computed Inverse

After having computed the inverse, it is desirable to check the accuracy

of inversion. The obvious way to do so is to obtain the product of A and

A and to examine how close it is to the unit matrix. However, in view of
0

the finite word-length of the computer, this product must be computed care-

fully. Whenever scaling methods are employed, the product of A and its in-

verse may be determined in a number of ways. This will be discussed for three

different cases: (i) row scaling, (ii) column scaling, (iii) both row and

column scaling.

(i) Row Scaling: A = PA

In this case, A- ' = A- ' P-1. Therefore, as a check on the dependability
0 I

of A- , the product A A would probably be examined as follows:
3 0 0

A A =P(A A 1 ) P (5a)
0 0

on the other hand,

A1 A = A-I(P-P)A A-IA (Sb)
00

Equations (5a) and (5b), while representing the same quantity (A A- A A),
0 0 0 0

may not be found equal due to the available comuuter accuracy (finite word-

length). Example 2 illustrates this point with an extreme case.

21 4~
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EXAMPLE 2:

O.10000000F+03 0. 20000000E-04 0. 29999999E-01

A o 0.19999990E+19 0.40000000E+12 0.60000000E+151
-O.50000000E-08 0.49999999E-11 0.0

Factorizing A0, we obtain A = PA, where
0

0.39148676E-01 0.0 0.0 -

P = 0.0 0.78297339E+15 0.0

0.0 0.0 0. 15811383E-09 1

0.25543647E+04 0.51087295E-03 0. 75630943E+00

A 0.25543639E+04 0.51087304E-03 0.766309r6E+00

_O.31622776E+02 O.31622776E-01 0.

Now, matrix A is inverted, yielding

0. 78297352F+03 -0.78297339F+03 -0.22097009E-14

A- 1 = 78297352E+06 -0.78297339E+06 0.316227766E+02

-026104324E+07 0.26104333E+07 -0.210818510E-01 j

The product AA is computed as

0.99999999E+00 0.23283064E-G9 -0.433680861-7 I

-0O.232830641-09 . 10000000F-1+ -0. 433680861:-17
-0.45475735E-11 0.27284841]E-11 0.99999999E+00

The required inverse, A., is computed as A = A P Once A has been

computed, we can obtain the product of A and A by use of equation (.5a) or
0 0

(50). Utilizing Eq. (5a), yields

22
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0.9999+0 0.0 -0. 2l475700E-09]

A-=P(AA -)P 0.0 0.99999999E+00 -0.42951393E+07 I
00 I

.0 .0 0.99999999E+00j

Comparison of this matrix with the unit matrix (tile (2,3) entry in partic-

ular) would yield tile faulty conclusion that an accurate inverse has not

been obtained. If, on tile other hand, Eq (Sb) is used as a check, we find

that

0.99999999E+00 -0.69876856E-16 -0.170530251:-12

0-A =A- (P- 1)A=A- A - -0.29795324E-06 0.99999999E+00 -0. 10186340E-09

I.. 0,25428985E-05 0.368787301:-12 0.100000001'+O1l

Comparison of this matrix with tile unit matrix would be favorable. Thus, in

the case of row scaling, equation (Sb) must he used as a check on the iroduct-1
A and A due to the finite computer word-length . Use of this equat ion

0 0
avoids the possible problem (present in Eq . 5a ) that th matrices P, (AA

and P1 may not be compatible for multiplication. ,as exemplified above. To
reiterate, in the case of row-scaling the product of A and A- must be

computed as A A = A A, where A is the scaled matrix.
0 0

ii) Column Scal ing: In a similar manner we will show that the product

AA must be used as a check :l the goodness of A1 in the case of Column
scaling. This call be seen fr'oml a omp r isoil of tilt ollowing equations, l

iwhere A AQ and A- = Q-I A.

.-A ,\ = Q .(,A A)O (6,,.0-

A A- I = A(QQ- )A -  
= AA-  (61) i

0 0

Again due to finite word length in the computer, equation (61)) should be

used to verify tile goodless of tihe inverse when eoIumn-scalI og is perforllled.

il) Row and Column Scal il:, In this case, matrix A is factorized as
A PAQ, with tht required inverse, A =Q -A -1 The decision to iso

A A or A A as a check towart, the accuracy of the inverse obtained mav be00 0 " -
arrived at. as follows. The equations representing A A and A A are

- t; !23, 0 0 o 0
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A A-  =PA(QQ- )A- P- =P(AA- )P (a)
0 0

and

A-IAO Q -A-(P-Ip)AQ Q Q-(A-IA)Q (7b)

0 0

The difference in magnitude between the largest and smallest entries In the

diagonal matrices P and Q is calculated. These two differences are com-

pared, and the matrix with the largest difference is attempted to be

eliminated (either P or Q). Thus, if the entries of P are more incompatible

for multiplication than those cf Q, equation (7b) would be used as a check

rather than equation (7a). An example will help to clarify this procedure.

EXAMPLE 3:

0.10000000E+03 0. 20000000E-04 0. 29999999E-01]

A = .19999990E+19 0.40000000E+12 O.60000000E+151
-0.50000000E-08 0.49999999E-11 0.0

The matrix is now expressed A = PAQ, where

;"0.39148676E-01 0 0.0 "-

I' = 0.0 0.78297339E+15 0.0

0.0 0.0 0.15811388E-O')

O.59091075E+03 0.0 0.0

Q -- 0.0 0.20208866E-02 0.

10.0 0.0 0.766309491+00

0.43227589E+01 0.25279643E+00 0.999999911.1+00!

A = 0.43227575E+01 0.25279647E+00 0.10000000E+01

-0.535153177E-01 0.15647971E+02 0.0

24



A-1  015823007F4-04 -0. 15823005E+04 0.63906048E-01

IFI

0.20003991E+07 -. 20003998E+07 -0. 16155222E-01

Comparing the magnitude difference between the largest and srnliest entries
24

of P and Q, it is found that in P, the difference is approximately 102,

while in Q the difference is approximately 10 . Therefore, Eq. (7b) should

be used, in order that multiplication involving P and P is avoided.

Performing tie required multipliceaLion indicated in Eq. (7b), we obtain

-1 -10.99999999E+00 -0.70030334E-16 -0.56613984E-131

A- A Q(A A)Q -0.23651533E-06 0.99999999E+-O0 -0.43109444E-10!
0 o

0.89538983--06 0. 15661482E-12 0. lOoooOOE+Oli

3.2 PERTURBATION

In1 some applications, th- given matrix may be ill-ctonditoned to tile

point that the scaling method described above will not allow inversion of

the matrix to the desired precision. it this case, application of per-

turbation theory to th,- scalcd matrix, A. may be helpful. Several methods

will be described.

A. Dtagonat Perturbation

The first method consists of forming a new matrix 1S

C - +cO ( 

where A is tie scaled vcrsion of t' i iginal mat rix and 1) is a diagonal matri 3x

25

-- M- _



AI

whose entries call be taken as those of the diagonal of A. The multiplier, ,

is chosen to be suitably small (more will be said about this choice later)

such that C is invertible (allowing for the available computer accuracy). We

can now write A = C - CD so that we have parameterized A in terms of the

small parameter, C. Since A = A(0) is an analytic function of , its inverse I-

is also an analytic function of C; therefore, a power-series may be written.

Indeed,
A -  = (C - CD) - t+}

= (1 - cC-1 D)-C 1

= IC + cc + 2(C 1D)C - + .1 (9)

Thus, using C 1 , D, and C, the inverse of A may be computed. An advantage

of this method is that it can be performed without any visual inspection of

the given matrix. This is so because the diagonal matrix D is specified

automatically. A disadvantage w-6rth noting is that the required

inverse, A 1  is represented as an infinite series of matrices and cannot be

expressed in closed form. Thus, an exact representation of Al cannot be

obtained, although it can be approximated to the required accuracy by computing

and summing enough terms of tile series.

We now return to the matter of choosing a suitable value of C. Clearly,

the smaller the values of t:, the faster ,-ill be the convergence of the series

(9 ). On tile other hand, c must be large enough so that it results in adequate

perturbation, i.e., such that C is invertable with the available computer

accuracy. It is useful to note that a theoretical upper bound on C can

be obtained; indeed for the series (9 ) to converge it is necessary that I(I be

less than 1.0/Ilargest eigenvalue of C DI. [19], [201.

B. S inZ - e- -entry- Perturbation [

An alternate perturbation method consists again of forming a new matrix

C=A+tD '

where we now restrict the perturbation matrix D to have K
26
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only one non-zero entry, again on the diagona. Without loss of geteralit,

this non-zero entry can be taken to be unity. Then, the mntrix 1) has rank-one,

tl".ACL -0e and hence call e written ks 
M

D V'(10),

ThusT1

A 1 (C -- NY
.1 ( 1 lyT-1,-i1-":

T1 -1(C X)Y1tt

I + C\1 + .YT-IY + (Y \ X)2 + , yr - ) () M

Now, the quantity in brackets in equation (11) is a1 power-series involvilg

scalar teri s. Therefore, eqatltion (11) can be e'pressed as

A1 I + tTX l

L - cy c

It can be shown that the setries converges for all It is, however,
1

best to choose T.. , Thus, equation k12) represents in e.xact solutionYTC,-I .. . . . ..X

for A . A disadvantage of this trethod is that Visual inspection of tlhe matrix.

A, is necessary to determine the row(s) and/or columni(s) causing diffictiltv in

tile inversion process, and thus a sti tablo entry to perturb. An illustrtivo

example of this method is given below.

EXAMPLE 4:

0,1 ,IO000000+03 0.20000000F-04 0.29999999E-Ol '

A 0.19999989E+06 0.40000000E-01 0. 60000000E-,2J

-0. I000000OE+0 O. I0000000E43 0.0

A visual inspection of this matrix shows that the first and second rows

are nearly identical to within a multiplicative factor of ".0 x l0 . Therefore.

suitable diagonal entries for perturbation would be either the (1,I) or (2,2)

entries. The (2,2) entry was selected for perturbation, and through iteration,

a suitable value of c was found to be c - 1. x 10 . Scaling was first per-

formed, and then the perturbation. yielding:

27
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0.93131018F;+00 0.11733771E+01 O.99999991E4+OO 0.0 0.0 0.0

A=C-ED 0.93130987E4,00 0.11733773E+ol 0.10000000E+01 -10 0.0 1.173377 0.0
-01592E 0072631447E+00 000.0 0.0 0.

Note that D can be expressed as D =XY so that

i0. 0.0 1.0 0v0
D = 1.173377

0 .0

The inverse of the original matrix can now be computed as discussed:

0.20000000E+05 -0.10000000E+02 0.52504835E-18

A =0.20000000E+12 -0-10000000E+09 0.10000000E-01

-01999E0 .10000000E+06 -0 .6 6 6 6 6 6 6 6 E-r0 3 j 7 A

This yields the product

A01 [.10000000E+01 -0.51159076E-12 0.66174449E-22

A -A -. 95367431E-06 0.10000000E+01 0.0

iJ0 0
L0.0 -0.95367431E-06 0.99999999E+00

C. PERTURBATION: THE LIMITING CASE: In the previous discussions on

perturbation, it was shown that matrix A is a function of matrix C and the U

scalar quantity, c. That is A =(C(C),C). Recall also that whereas A

was ill-conditioned (for inversion), there were certain values of c for which

the newly formed matrix C could he made well-behaved. Inspection of equation
()shows that 

(

A im C (13)
c- o

28 V
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This observation can be exploited in the following way. Successively

small values of E, say Cif are used to form a family of C - C(Ci)

matrices. The inverse of C(c) is computed for each value of C used, and

the successive inverses are examined. There will exist a region wherein

reducing the value of c from C to c will have little effect on the entries

of C- l , This is shown graphically in Figure 1.

C-l (Shaded region is where C-VC is not well-behaved)

I I t tII

I i g Ii

mill i 2 1l

small f large C -I

Fig. 1. Effect of small changes in ": on C -l .

In this region, Cl can be taken as an approximation to A. As seen in M.,
Figure I, there will exist some i for which the inverse of C is well- I

behaved. The closer the selected value of ; is to this value of ilthe i

better will become the approximnation A = C-
. Although this method tray only

yield in approximation to tile actuall required inverse. A- 1  it may be f ur ther -V

refined by use of the method described in the next sect ion. In fact, the

iterative correction method (of tile next section) s be used in aojuctioii

with all of the methods discussed earlier.

3.3 ITERATIVL CORRECTION

Consider a matrix, X, and assume that its inverse hbes been computed as

Y X-  The iterative correctiov method (see Fig. 2) consists of forming the product
NY, comparing it with the identity matrix, and improving the computed inverse,

Y, by an amount proportional to tle error between XY and tl,e unit muatrix. To

examine the effect of this operation, let

Y =-I1+ E)(-)

where 1 = identity matrix and E is equal to the difference matrix between

XNY and I .

29I



XY 0 (+ E) (5

E (XY -1) (16)

Now consider the iteration YYmproved - E (121. Clearly (17a)

- IY. Y - YF
improved

X-(I +E)(l-E)

1 - E) (17b)

Upon the second iteration,

SYimproved 
=  (1+E 4)

and so on. This prodecure can be depicted in block-diagram form as in
Figure 2.

I -E MULTI LIER-i
IIE

Fig. 2: Block diagram representation of iterative correction method.

The number of iterations to be used may be specified by the user. For

this work, n iterations have usually been used, where n denotes the dimension

of the matrix in question. Note that a more general version of (17a) is

__improved - Y YE where B is a suitable positive fraction.

EXA4PLE 5: (Effect of iterative correction)

0. 10000000E+03 0. 20000000E-04 0. 29999999E-01

A 0.19999999E+06 0.40000000E-01 0.60000000E-tO2

030



Assume that the invurse matrix has been computed as

0.19999999E+06 -0.99999998E+02 -0.10058593E-16-!

0- 0.19999999E+13 -0.99999998E+09 0.99999998E-32

-0. 19999999E+10 O.99999998E+06 -0.66666665E-05_

so that

o.99999999E+00 0.36379788E-11 0.52939549E-221

A A 1  -0.15258789E-04 0.99999999E+00 0.0

-0.11718750E-01 O.15258789E-04 0.99999999E+O0 !

Now, if 1 iteration of the correction method is performed,

O.10000000E+01 0.0 0.0

A A71  0.O. 010000000E+01 -0. 54210108E-19*1

o0 -0..156500E-1 0.0 0. 99999999E+00j

with N(=3) iterations performed,

0.99999999E+00 0.0 -0.13234889E-22 AM

A 0.0 0.10000000E+01 0.54210108E-19

L.78125000E-o2 0.0 0.99999999E+00J

It can be seen that the product A A -1 is approaching the unit matrix. The

worst entry, (3,1), in the product has been reduced to about 60% of its

original value in the 3 iterations.

The improved inverse has been computed as
4

0.19999999E+06 -0.99999999E+02 -0. 76657257F-171

-- 0= .19999999E+13 -0.99999999E+09 0.99999999E-02

L0.19999999E+;o 0.99999999E+06 -0.66666665E-05

. 31
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This example has demonstrated the usefulness of the correction method in im-

proving the calculated inverse.

3.4 APPLICATION

Determination of the kernels of the volterra model can be accomplished by

identifying the various link transfer functions HI(s1 ), 1i(sl,s2 ), etc. The

first step, of course, is to determine HI(S 1) for the small signal linear case.

Next, identification of H (Sls ) is attempted. However, it is shown in [1]

that the poles of H(S S.) are given as f +'k where A. ) are the
2 I, 2- ik '.' ~k

poles of the linear transfer function H(S The residues at these poles

can thee be determined by solving a set of linear equations from data obtained

for larger amplitudes where quadratic effects become nonnegligible.

The set of equations which must be solved (for computing residues of

the response) may form a nearly dependent set if the network is a wideband (i.e.,

its poles are seperated by two or more orders of magnitude) network. Accurate

inversion of the c3rresponding matrix can be quite a formidable task in this

case.

In this section, a 12 x 12 matrix generated in the analysis of a wideband [
network is examined. The equation of interest is

(A -Y

where R = column vector of residues of poles of the system response

Y = column vector of integrated system outputs at time T

A= 12 x 12 matrix whose entries are generated by

().= e f;I

0 3M1- (m-l)! Xil~

SThe linear portion of the system examined has two poles. These poles are

XI = -0.011550998(2r)(106 ) rad/sec

). 2 = -10.6169S6 (2=)(O 6) rad/sec

The system is excited by the input function

where

QtI = -107 rad/sec

= -1.75 x 107 rad/sec
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The poles of the quadratic response of this network are found in terms of the

input and linear transfer function poles is

YI = hi

" '2 = )'2

2
4 2

Y5= XI +  2

Y6 = a2 
+  1

y = a +2
. " = ° 2  

+  
1

Y9 a 2 +  2

v =2a

11 2 
/

12 1 + 2

The matrix A0 was generated for T = 61A nanoseconds. The difficulty in in-

verting this matrix arises because Y and consequently

C(I,2) : C(I,5)

for all I, thereby making accurate inversion by standard routines impractical.

Jie matrix A is shown below.
0
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0.143J(1443Ji13r,1J 3.5 1:.111321.142373;,-13, 3.115a.ms:1ox .
4
?

1 4 3 
Z2;344jaoj1:sj V0.16472051220533755!-10 J.4'4g2Z7356'1323,-lj 0.310 ,3)63~ 72D-13 /7a7 4 4zGj
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It is readily apparent, through visual inspection, that row scaling is

necessary, yieldingf
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Program Steps Used: a

The row scaling indicated on the earlier pages was achieved

by choosing (see program description on page 39) A

ISP - 1

ISQ - 0

As ment:oned earlier, the sezond and fifth columns of the

original matrix A form a linearly dependent set. Therefore, a
0

perturbation procedure is needed to obtain the inverse. We

used

IPERT - 2

so that the 2,2 entry of the scaled matrix A was perturbed. The

amount of perturbation used was FAC - O.IE-05. The inverse of the

perturbed matrix C was obtained by the high precision routine

GKRDCT. From C7, an estimate of A was obtained by use of the

deperturbation routine DPERTI. This approximate inver,'e was then I

refined by use of the routine CORCT2 via the option parameter M

ICORCT = I

The resulting inverse matrix A was then descaled. The

inverse of the original matrix, A- , as well as the product
0

A -IA are printed on the succeeding pages.
o 0

(Note that a preconditioning of the original matrix was

employed by setting ICOND - 1. This caused dia -,-nal entries of

A to be multiplied by 1.000000001 1 + 1,OE- ,,0K
36 1 3OI

- ,U

.... ......... .... .. .- - - . .. .. ... :.I



INlVLR'3t OF OrlI'.I:IAL IlARIX), At,

-0. 161234GJ'531 J!J_ 1 -33 3..1 3,11 . iPG I 2 -- .1 _ 1 u ii: 2 0 ~23 3:13 ~I*3-3.~7 1321- I* ~ 3 23'i'44571327;0f 1fl.* 23 -. UT 2..;'1'.- 1) ' -. 1.;241 131

-O.703237G2S3GP37D'o; 0.7:26332737036.1 23-'*-13 - 3 ., 7W. 1.. .,~ 1 0. 11792)S~. d.1

0. ~ ~ ~ ~ ~ ~ ~ ~ ~ -bI61T1.3l'0 11.~ W.'.2793, 11'~ 37. 1. j 13 110. 1.,-3

a.37:7J;7677S3I504I;r.2 333:;3~1i~'1 3.7.'9 .. 732723.,111 -.. 24372.,13 ' 1'

3.773331 7573J1532471o'1 32791,:02:-I . -... /..:7I; .i.I s 21..3133.3;*1

0- 2,)S253219;30US1$1.12 -01773 2 ' ' .2 'X .317 ,~1('4 It, V.4 7, ~ 33.2

-3.11954.3 73: 15137024 13 0. 4 33/51 311 ) 1' 4o 1 - 3..,7 ~,.. , (1 OlS v3 .l', I...I

-0. 2'312375-,122 )3.CI1l 1. a..7 3 0 3 ~ 3j* . -U. 1: I.77. 2. I,20 (' 0..' ~ .V,; A33 .

-0 3 0 1 ; 3 1 3 o t, 1 %-Z - ' 2' 3 .7 2. I Z I O G ...7.,, 0: t I ' J " . ' 5 1 ) 1 )4 1

J.7j7/!~q3S3'0 . 7, 1 )R 31,,, 3 17 711'3 2 3 1.2 J)I1*;, ".3. -3. 5,, 1., '." l'1

............................................................................. 61

- 2V.

17''-/37

R~.4



z-1

It

),I -)jj I

J. :- o, >,I- 2- ; ,V-

P~~~~;:opnuc1 ' "I I t:3, :1'41 " M\X, ', ,\A *,; V IP 3o; 'O 'r' ;:':v:::s r

-O. ln:, tif),,J :3 'iar'ji- 3. 2 .t ).5''7. '.n :;,',' o.:: fi' :: *17 7 11'."-) -3.n1 1. XIS?,,'). : -:2Ti.J

0 . , I ,. ;.. )9-)..':33 ' 43:21 : N:) " 7 3.1 : 2.2, 197 
1 

7 J 71 
"- • 

53 J. i3O J 21 .<4,J 1 * 1: = "

"O 9J0 ' l ;9. 2 " I. i J, I5 V.. .I r~.l a. i.l..1 J , 1 1 V. - 3 V- J " J J lJ:" l ..$ :%

0. 3 6 '3-31 1 "" .. ~1 '" " .;11 .1 ,11- 13 -. 7,,,'5~t7t17 Ia-1 .. '1 nfl S 3 .. ,.7,,v-. -3 5' ."4 1 il. j,.j

0.)l')aT'.3 3,'- ." .)':i].9. .135 [,.'4?O -j 3~.A .A ,7 t42*I.,.'-3/) 3.,.ao 1 ) -.... 7.3,. ,..ja

0.1.27?312x3330233 '*p-3 -. 0;:3 ' 212t.1.37'9:5.7.-3 - .1 . :5 'zc n a 3 21I' ,-1 2 22 2aj

-0. 193.34 0 ).. , ."b.2321'-37 3".3512 14 1333-? '3 7)-3 7 -0.41 77 fi:4.. .); .. rp-3, 2.7 ?333,7373334 1 . ' ,-j7

0.0 -0. 345' 41315IJ. O :7;, - i -0. 3. I 7"Z: 9;1.' ; i 1 -3.3)515: I)s I 3 W-.'-
-0. 33 19 2 a l 33:3 7 0, 2 Op3 1,5:'3% r, 3 3.857$lt 7 .-;)I '3 "1 1 . 1 . )l, ,Ml"1%tN 1

3.93.t' 7733 . J ,' 4-2 - 3. :M37'3"1 ) 17. 7: . 0.11 7'3 I 1 ] 7'1 -" 3. 9.3t .A'N 7";0. 149)43' ,)- 1 - 1 ". .333274-a,3,5 "- . 0.17Z1 l4' 1) ., ' Z 1 2.1 7 1 4'1 13;t f,-: "-a:

IO.32),I3X)..,,u753 )30 0 ,='-, -L.7"73'1Z3t7142333.'-;: -3a./22 ;,1';.24 5,c;:;-33 : - 38. 311131102.592:a.

0.0. l ii2 b ,,5 .,. -l.jJ21 37 7' 5b, 9 17 -. 4 .-' 7 12"; 3. -3 , t . 5j, 1, -. 1

-J.3)01h9o. 3l.5431a-.37 -,3.15710 ),5., 34l34).Y'- 1 -. 1 3;, .) l o iP-31 "3.t ,J, 3,47,,3aj l7'-7

E 0. O ,)S] ' .9 )9 31 Ju,. .N-., 7 .3 3 1 0., ,3';. Il7l 3.1 . , ... 1. .. .

0. 9.74., 11. ,7013,-3, -1,. 373. 13:1 94.. ', -3.21 7 2..1 10 J 1 5.. 1M-

0.4 5 0 k , 2 3T 3 J51137)3'~~i -35:' 16711z9233 33,4_- -1.a.7 : 11) '33."-J 4 0.)) .3,2a, I-.I
0 . Z2, .104 17'3 1.1.340-1.7-3 1.317 030 144 ' 1;3 . I'3 . 3 3 4. 5 2 b.-,

t ! ............................... ... .. .. .. ... .. .. ......i ,) I " " o " .. ... ... .. . . . . ... ... . .

I ' -): ,73;-L- 3.937 '1-37, :1f.X- 3A22322-03 1=- .

38

- .. "~ -8t~ e~ q . ' '~i ~ ' A



3.5 Program Description ,

This FORTRAN IV program performs high-precision matrix

inversion. This computer program has cap,,bilities for automatic adaptive

scaling of tile original matrixapplication of perturbation techniques in

finding the inverse and iterative correction of an (approximate) inverse matrix;

each of these has been discussed in the earlier sections.

To enable the test engineer to effectively use the prog-am, a description ii
of tile input data cards is given below.

Input Data Deck A

The input data deck consists of one card containing input variables,

followed by [ - cards containing the entries of tle matrix to be in-

verted, where N is tle dimension of the matrix and [Xi is the truncation

function.A

CARD #1 Option card which contains eight variables. FA

Variable Name Description Columns

(Format)

N(12) dimension of the square matrix to be inverted 1-2

ISP(12) adaptive scaling option 3-4

ISP = 0 row scaling is not performed

ISP = 1 row scaling is performed

ISQ(12) adaptive scaling option 5-6

ISQ = 0 column scaling is not performed

ISQ = I column scaling is performed

IPERT(12) diagonal perturbation option 7-8

IPERT = 0 perturbation is not employed

IPERT 1,2,...,N.perturbation of the (A )IPERT,IPERT
entry is performed

IPERT N + 1 perturbation of the entire diagonal

is carried out

.ISLID(12) de-perturbation option to be used with IPERT = N+I 9-10

ISLID= 0 deperturbation is performed with
subroutine DPERT2

ISLID= 1 deperturbation is performed through a

"sliding' correction method (utilizing a

family of matrices)I ~-~MR



iI

Variable Name Description Columns

(Format)

ICOND(12) Pre-conditioning option 11-12

ICOND = 0 nz. conditioning of the original matrix

is employed '7A

ICOND 1 the original matrix A is preconditioned -
0

with a multiplier 1 + 1.0 E-9 along the

diagonal

ICORCT(12) option to be used in conjunction with IPERT = 0 13-14

1CORCT = 0 iterative correction is not used when

IPERT = 0

ICORCT = 1 iterative correction is used when 1
IPERT = 0

IPURNT(12) printing option 15-16

IPRINT = 0 suppresses printing of many of the

intermediate matrix quantities used for

computat ion

IPRINT = 1 all intermediate matrices are printed

N

CARl) 2 through card f1 I + 1]

These cards contain the matrix values, and are read

in 3D25.18 format. The matrix entries are entered

on the cards in an order prescribed by columns. That

is, they are entered as first row, columns I through

i N; second row, columns I through N; etc.

END OF FILE CARD

Note a logical flow diagram depicting the effect of various option para-

meters is given below.

A li:;ting of the complete FORTRAN program is given in Appendix B.
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Ao

NO ONDITIONING
CONDITION ING l O"O

SCALING V

NO SCALING
(IsP-O, ISQO)

ROW COLUMN ROW t. COLUMN
SCAL ING SCALING SCALIN (Isrp-))

PFRTIIRBAI ION
(I PERT>'O)

NO PER1URB TION

SINGLE-ENTRY

P ERTURSAl I (N DIACCNAL
(O<IPERI<NJ PERTURCATION

( IPERT-N)N* I

OBTA IN INVERSE
(CALL GKRDCT)

'SLIDING

SINGLE-ENTRY kING DIAGONJAL NO DE-
DE- PCRTURBAT IONJ CORRECTION DE-PERIURSAl ION PERIURHATI? 1 O0-PR1;l~ O

(DPEKTI) (I PERT -X. (DprRT?) (I P! T-O,(I[RO
ISLID-)) ICORCT=I) CCT)

FINAL BI D
F OR CORRECTION
(CORCF I ')R 2)

II

IA
Fig. 3 Flow diagram of IMINV progrim options L
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APPENDIX A

IGRAM PROGRAM
LISTING

C PP.OGPAr' !:A,''E: IGRX!
C NETWJORK~ T;RANSFR-FUN:CTIO:1 tfl:ITIFICAITIO:! ROUTIN~E UTILIZI:frG
C PENlCIL-OF-FOIZCTIOIS IIETItOP (PURE INTEGRATORS USEDl)
C

Dt.EIJSI:i X(132),V(12);Or(124 ),VOflG( 1O4),XlEC(1O2I4)
DIII1EfsI:1 DA1A(]O24.,2),DAT'2(1024,2),jtUFF(3372)

[lI!tEI!SIOIl IPULSE(64)
OItIErJS10:1 TITLECZO)
REAL*.' 6,Z, GM.A,:Z1A~DA. COE FF
RE.%L*.^ DELTA., ',rSAV,DIILSAV,AGQAV.-, SUW*2,*XSfV

EQUIVALEJCE (P.ATA(l.1),X(l)),(PATA(!.2),V(1))

COI'.:-'O~l IGKR.tIr KR u

RU1CL=3.01
1*:AX=20

t It,"PL=1024

lilt TE (6,2)
.!I I E (6, 1022)

RrAD (5, 1021)T IT1 E
'RITE 2153)

4320 READ 5, 100)::1PLTI
4321 PEAn, 1 31:,1IS I P RrO I. I AS, ETA

IFMI.EQ1.10-O0)GO TO 4320

C
I GLI'=)
IZTS=1
QSAV~1 .ono)
n=CQSAV
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V( I)=VORG( I)

IF(IPLT.EQ.O)GO TO G3633
WR iTEC 6.,1003)
CALL PLOTIT(DATA ,2,MIP,l.t'Pl.IS'IP,IIAXPL,1,1.3)

6G333 CONT I NUE

C START IDEIITtIlCATIO,: FROM4 111PUT OUTPUT nATA
C

CALL GlIXjt~1.ET,.ZSG~,LrAGZlA~tI
CALL El~(XEVRAH,~1 ,X~~A C~

C PLOT RCCONSTRUiCTIOZJ

WR ITE (1,1 004)
IF(IPLT.El.O) GO TO 6544
CALL PLOTI T(DATA2,2,fIP1, 1,14P1, I SKI P,I!IAXPL,1,1.3)

654, CONT I fUr
C

WR"TE (6, ' )
IIRI7E(6,1022)

100 GO TO 4321
1234 CONlTIUUE
C
C95
I FORIAT(5I5,3F5.O)
2 FORIr.AT('1')
536 FORJ AT(l/.IX.TPUE RESPOJISE VF.SES RE-CtOUSTPUCTI1n RESPOS8,1I)
13,03 FORI4A..T(1:;1,50X,'STARZTI1JG Si'UL.TI3;',/20 :,'SYSTEf. O~r'.'! 1,'15,

1I,20X,'II * 1 = ',f5,/j/,23X,'SAt'PLIilG I'l-TER711L = ',FIO.G.Il,2)X.
21IREII = ',15,/,20X,'M~AS= .51

1001 FORI !AT(EIS1) M

1003 FORIIT(I,SX,'I!IPUT (+) AJP OUTPUT (*) OF TII: PLVJ*TI,/)A
1004 FORt:AT(I/,5X,' OUTPUT ()AIM) RE-CO:ISTPUCTIO'l (. 4)
1021 FOR:IAT(U'j1)-
1022FO. T(I//III1/IIII1IIII1lI1 IIhIII)
1023FOU T(1X'*.*...***4*************,-

6995 FonMlAT(GF10.0)
STOP

C
C DEFI1111T IOff OF PARAM:ETERS USJ'P IN THlE SWrULATIO:J OF A
C L1IIEAR MYJIMIC SYSTEHi
C
C X IS THlE CORRUPTED! OUTPUT SEQUENCE
C V IS THlE CORRUPITED) INPUT SECQUEN:Ct 3

C GAI4IIA IS THlE CO!EFFICIE!IT VECTOR
CM

-~ C HIAX = ACTUAL Dh1IS~JSIZZ OF 2-Dlt' ARPAYS 1:* THEl DIU1O0'
C STAT'El.VJT
C 11 = ORDER OF SYSTEMI
C TIlE MAXII4Ull VALUE OF 1-1 IS !:.tAX/2-1

C MP1 = l1+1, THlE TOTAL NUUI10ER OF S41-:LElD POINT.- I:1 EACH SEO.U''!:Y
C
C RHO = EXPECTATIO;( II)Q))
C

4-C DELTA IS THlE SAMPLING l.IT ER7AL
ME C

C IGP44 I GRA1HI1 IS PERFORMED
C
C IPLT=3 NO PLOTS72
C IPLT=l PLOTS WILY IJITl PRINJTER19
C19
C IMlAS =0 1.O DIAS IS ASSURED PR2SEUT 01 IRIPIJT-DIJYiPUT DATA

CIGIAS =1 SHIALL VALUES OF IIPUT-OUT "UT S ARE* sst:rfl Pnr!s:IT
C Off THlE DATA.
C

END)
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IIoIt
SUBROUTMI!E t'4(XVIP u JLAQAK?.AVt, GZ rx

I IREW:
C TIIS SUGROUTI;ZE PErFORI-S T11' GRIMI TECHNlIQUE
C

IDFLMZ)

DOUB;LE l'RECISIOU G!Ul
O0U3LE PRECISIONI G,-, GALUIA, XLA1DA DELTA, EL, PROD, Q,QS %J
REAL *S VARQ, VAR, , FAC
REAL.Z SCALI7(23),SCAL

co;rIou /IIUI'E;t:i Z
C 01MU o O IDIAS/IBIAS

C URITE (G, 1003)

1000) FOP;:.IT(1!11,23X,'TIIE GRAIl I TECIrIIQUE')
c JOPT = 0 IF DIRECT TRA1ISIISSIOUI IS ASSUMMSID

JOPT=0

IF(I PfEI.E.0)JOPT=l

c DEL IS olIElIU1MERATOR OF THlE IrI01r. FIRST ORDER DIGITAL FItT711.V
D0191=1,.U
D!EL( I)=l.ODOO

19 Q(I)=QSAVP
WR I TE( G 20207

2020 FDfll:AT(30XIQ PA P-',-E T E RS'
CALL ~rIVEC(Q,:I)
HP2 =:i.2 -I -k

IIPIP2 =11.1142
4R=!!P1- I REt! U
UI1P I n=:wIP. I nct'.
00 12 I=1,14AXY

DO 12 J=1,1*L X
12 U(I,0-0.0DO3

VARQ=3.0
VAR:*sO .^
DO 300 =,-~
VARU=VARIU.V( I )*V(g)

300 VAP.)l-'AflQ.X( I )*X( I)
VARQ=DSQRT(VARO/I:P1I)
VARll=DSQRTC VARU/!!P)

C
C
C CALCULATING THlE G MUMTRX -

IF(IcIAS.EQ.3)G0 TO 11 i

IIR=IPl- I RER.1

DOlI =1,XPIIP2
GAM-l I )=G. 0
GAt-alj( I) )0.0DO0
DOIOJ=I,IlPUPP2

10 G(I,JI)=0.0D0O
GAI )=1. 0

IF(KZ-IILY)25,25,2.
25 GAIIIAUJIP2) =0. 0000

SO TO 26
24. FAC=1.0

GAIVIA(UP2) -V(K- I DLY)/FAC
FACul.O
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26 COIIT I NUE
D050Il1,N
(GAI1( I +1) =GAM( I +1) *Q( I )+GAIA( I )*DCL I)
GAIMM4A 1+1) -GAMMA ( I ) *DU( I +)W-111t4 ( I +1) *Q( I)

30 GAI MAM 1+:1112) =GAMllA( I +!IPI)~D I ); CAIIIM( I +'IP2)*C I)

WO 40 11l,tPIIP2
DO 4~0 JmI,NPPNP2

40 G( I,J)=G( I,J)+GAIt IlA( I)*GAl ;'A(J)
F) COUT I IUr.

cPREFOR. SCALINJG Oil 0-MATRIX
DO 735 I=11,P;IP2

DO 736 I=1,IIPMPP2
DO 736 J-1,11'i1112

736 G(1 ,J)=G( I,J)/(SCAtE( I)*SCALr.(J))
wRI fCUO,1009)

1009 FORHM X0, ---G MATRIX-')
D0 55 1=1,11PIIP2

55 VIRITE(G,3)(G(J,I),J=1,l)
3 FORIIAT(1X,0013.5)

42 CONT I HU

D0331=2 ,IPIIP2I
GO G(l,d)=G0(J,t)

IF (JOPT)7 0, 90, 70

70 DO' J=l,IIP'II'2D001=1,11R1i
G(I1Pl+ I.J ) =G(:IPlPI Ri4I , J)

80 COIIT INM
IIPrJP2=!IPIIP2-1 I
DO85J=1 *!IPIIlP2

^AI.1(fIPl+J)=SCALL%ii'1lPI R+J)

G(J,lPl+' )=G(J,IP1PI R+ I
35 C0:IT I IlME
90 COIT I NIE

CALL GKtRCT(GZ,XLAI1D,i,IIP2,riNX)
C DO 7CL4 SYNTHTIC OFP2N ECOX!ID

741l XLAMDA(I )=XLAl.DA(I )/SCALE( I)
IF(IDIAS.EQ..)GO TO 4
IIJPN2=IPIP2-1A
IJR=IR-1

4~3 COJT 1W,::
XI IEAtl= ,LAI MDA (NU PlIP2+ 1)
IF (JOPT) 120. 130. 120

UR 120 IIPUP2=:IP14P2+ I REM
D01221 =1,lIR

122 XLAMIDA( IPIIP2- I1+1 )=XLAliDA(NP2+NR- I)
D01231=1, IREV,

123 XLAI$A(IJP1+0 =0.000
130 CONT I NUEJ

FAC=1.0$1 D03011 =UP2 ,IIPIIP2
301 XLAIiDA( I)=XLAMDlA( I)*FAC

W i1001 FORI-'AT(1OX,'TIIE SYNTHETIC COEFFICIENT VECTOR, XLAMIAk, IS')
DO 150 I=1,tIIPUP2

150 GAIiA( I =XLAf40A( I
C
C GENERATING GAMM1A FROM XLAMDAf
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CALL BUli. I)EL,WI,IAX)

GAMMtA( I ) 0 -f

160 GAfIl.iA( I)=GA,' f'A( I I ,J)*XLAfl0DA(J)
165 CONT UI

00200 1 =2, IW;JP2
200 GAINlIMA I ) =GAM.I"M I )/GA1I.A(l)

IF(IDLY.[Q.0)G-O TO 172

DO 170 II=IDI.Y1,UP1
I NP1JP2+ 1-11I

170 GAHM~( I + IDLY) =GAIA.MA( I)1
D0 172 b11IflLY

172 CONT INUE
C
C CALCtJLAT I G TIIC EQU IVALENT C0)T IIUOUS DESCR IPTI ON

CALL. IZTOIS(GAr:1'-AA',0!LTArOPT)
lIRITE(G,1003)

1003 FURI.'T(///, JX,100(1I-),/,1X,100(
1 :1-))

SUB)ROUTINE GKRDCT( X, Y.XLA)iOA,!JN1,!,1'AX)
REAL*3 X(tIAX,l),Y(t4AX,1),A,!3,CP,CL,DCTCCC(20,23),XL11PA(1)
INJTEGE.F)41J;1(2,20)
C01114101 /GKRUi/ IGIKR

C GlR0O USC is vAnEP Or TNH FIST ROWI OF ANOINT
C1 DIAGOAL(JIEGATIVE ENJTRIES SCT TO ZER)

C 2 ABSOLUTE VALUE OF OI AGOtIAL
DO 6 J11'N
DO G J=1,11

6 Y(J,I)-X(J,I)
A=1 .010
DO 43 1=1,;J

L=I
M= I

C
C FIN1D LARGEST ENTRY A(L,11) IN LOIER DIAGONAL SURIATRIX

DO 18 J=IN

IF(DAUS(Y(KJ)).LC.B)GO TO 13

BaDAIS(Y(K.,J))

I~=
w18 CONTIN4UE

C IrJTERCIIANGE ROWS

~r IF(L.EQ.I)GO TO 24.
DO 23 J=1,tl
C=Y(L,J)
Y(L,J)=Y( I,J)37
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23 Y( IJ0-C

C URIC(IAKC COLUMlNS

24a lr(Il.rQ.I)CO TO 29
0O 2a d=1
C-Y( Jell)

28 Y(J, I)-C F
c EG I i SCP COMM~f1S TO WEI flIGiIT
C ARR~AYS Ut4( 11~t(110 Kl-VPRU )I

C OF R~OW UD COLUMN~ liTrICHIIMw'S

~l-Y( 1 .1

IF(J.t.l.)GO TO .

C--Y(, 1 )~CI
EY( J)3.00O

1.1 Y(,J)'.c/A
1.2 coIT IIIWE
I43 MU -

C
C RE,'TO[WC COLU4S
C y

00 58 1-2,I4
J-14+1-1

IF(K.EtQJ)GOTO2
DO Y~ L-1,11
C-Y (K. I

51 Y(kd.L)-C

C -
C RESTOflC ROWlS

Ir(V%,EQ.,J)GO TO 53
DO 57 Lal,?J
C-Y(L,K)
Y(L,K)NY(L*J)4

57 Y(L,J)oC
58 CONT I NUC

C **~**** SET IPI11T- k
IPRlITuO
I PRI.1T-1
IMP(INlT.11C.1)GO TO III
WRITE6,101)

101 FOR?1AT(/X,'DET 01 GRAM1 tATRIX IS ')
4 CALL PRUlC(OUT.1)

WRI TfC(6, 102)
102 FOI~lAT(/1X,'An3OIlIT M.ATRIX IS')

CALL PlMA.T(Y,tl.?J~tiAX)

DOIOOJ "1.11 A

CCC.( I.J)0'0.OOOL C
OOOK-~1,14

100 CCC(I#d).CCC(l,Ji).X(l,K)Y(,')
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WRITE(G,103)
103 FOfltAT(/X,'PRODUCT OF ADJOItIT AtIM GRAIi t4TRICtSl)

CALL PRI--AT(CCCA-I1,20)
ill COIJT I WIE

002 00 I-2,!l

Jr(IGKR:r.Q.0)G0 TO 200
A-Y( I,*I)

XL AlIDA ( I ) -DSQRT(CA/Y(l1E1) To

200 CO:IT I NVE
XLAIIOA(1 ~1 000
RETURN
END

SVI3IWVTIt IEI TOS(CA ?A,,,,.'1 '- A, IZTS)
C
C IZTOS SEPFARATES MIE K"CREATOI R~N TIIE DE10VI*IAro". PMflV'!IRG

V0UI',LI PIE!C I S I O: 6A."A, Xl1, X2, DELTA

X1(l I )'-60A11M\ I)
! X2( I)-cAIi;IA(:NP1.1)

CALL lZ1OS(X1,X2,J,Dr.LTAIZTS)
IZTS-IZTS41
F(IT.Q) 00 TO ?00

S END
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sUI'.ItOUTIZWC ZTOS(fl,A,!N,lOLTAulIS)
coO:0N IUan n1,i :11

c convi~sto Or A DtSCIZTE TItlE SYSTEil 1(z) TO A CONrrTIuoL'S THIt YT.l ts

c +iZ"A1 A(2)*zr*TA +. . . .Ml B(2)*ZETA *.

C ZETA i/Z
C
C I(S)-(A(1) 4 A(?)-3 * .... . (I1SII~O

OcJl41 + fl(?)*s+. .

c
C S(1) 1 ALWAYS

lCG,CFI.CF

COlrTmo. 0l00')
I ORI'- I ZT S

IujP1 =1,:14 1

111-"0. 093
DO 391-11,111 1

i1R(I 4! .I.lP)~A+(I

30 1111l4GT 1 0)

1000 FOI',:'1 (' 7-00MAIN D17-0IOIIIATOR''
CALL iPJvcc(!;,::ri 

M

willE(, 001)
1001 rolzoAI(I 7-00"AIt NI:MURATOfl'

CALL lRVl*C(N \,JI
IF(IZTS.I'q.3) GO to 10
lF(IZTS.Z~O.l) GO TO 2310
mrmZs.Eui.2) Go *o 25o

Ir(Ifl.I:Q.3 GO0 203
tiZTs.mio' Go To 25o

200 CW~jT INE
C
C
C LOGAO 111101C TRANJSI'OIA.TIOA
C

C3

c WORKE ON' INU1117ATOR
C

i r (lim. E(l.0)G TO '4G9
CALL 101 

A~\ 
EI.I.R~P R

75 CA( I )O:PXIR ,I()

473 CM 301
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_t

471 CONTI1NUC -t
I F (au.EQ.0) CAA(1)1. OnO

C
C
C NOW TIIE FIRST lit ENTRIES OF CA CONTAIN THlE S-DO0MAIN ZEROES OF NUMERATOR
C AIM TIM ErCAllifNIG ENTRICS Artt ZE.ROED OUT.
C

IF(NNI. NE.0) CALL POLCONC(CA,CAA,0,11)
C

C 11ORK ON DCE4N011ATORIL
CCV
919 CALL POLRT(B,TEIlP,rI,RQ,RtIIR)

DO1G lu1,tl
CRC I ).(nCI:PI.X(RR( I ),R I (I)

16 CF(I)=1.0P)0/CR(I)
909 W1RIMC6,1092)

CALL PflC%'.C(Cr,II)
IF(IZTS2rQ.0) GO TO 900

235 DOG 1-1,11
6 CRCI)a(-1.0/r.CLTA)*Cn)L~k(CR(I))

24o0 rOiu %T( ' 1O0CMIT1111.1C TII ISFOINATIOW'
WIME6,999)
WRITCCG.2000)73

2000 roRIIAT( POLES 1:1 S DOIIAII11)
CALL PRCVCC(CR,.')

300(l C,( I )=-CP( I)

C ADJUST PC GAIM COIISTAN!T

CC
A2-CAA( 1)

rA~C(Al1) Wj2

DO 693 ,:P
603 CAA(I)-CAA(i)*rAC

GO TO 2010 1
C
C
C DELAYrD PULSE INVAR I A:T TRANSFOIN:ATION
C
C

C SIhIFTS NUM~ERATOR COEFFICIE'ITS FOR DELAY

250 CONT-'AMI

400 CALL PL~(CPNRIIR

CI'( I )=N'CVP~LX (TU( I ),,,I( MYE

WPITI;(6.,1002)
1002 rOf.'lAT(1l. 'TMIC POLES OF TMJC Z-1)OV1.IN')

CALL PRCVMCCF 1UJ)

C
C PARTIAL rRACTION EXPANSION
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D03 1 -111

C0112=D.ODOO

5 COu11sCOla1*(1.ODOO-CR(I)*CF(J))
4i CONTINUE
3 CA( I )=COtl12/COIII
C
C
C TRAIISFORt ATIONJ OF DEIIOHINATOR ArID IJUIMATOR
C

22 021 =1,i

CR( I)=CDI OG(CRCI) )IPELTA
CA(I) =CA(I) *Cfl( )/C 1. 000-CF( I))

2 COIJTMIUE
CA(IlP1)=0.OD00
IIR I TI-( 6, 24 1)

241 rOIU4ATC D LAYED PULSE TRlANSFORM.ATION')

WRIME6,999)
22G 11R11TE(G, 1014)
1004i FORIIAIC .1EGATIVE OF THEF POLES INI TIIE S-10111,I'l

CALL PRCVI:C(CR,,tl4
IIRITF(G, 1003)

1003 roqflAT(1X,lJLIRPATOR CONJSTANJTS OF FAMPOIZ71l HI(S)')
CALL IPRCVV:C(C.\,::)

CALLIOLO(RC 1 ,) D07111,:11
71 CAA(I)=,).0O00

009 K=1, I
CALL POLCOI(CtCF1.K,tl)
D09J=1,IJ

9 CAA(J)sCAA(J)+CF1(J)*CA(K)
CAA(IJP1)=0.0l)30

2010 COAJT :JUE
DO 4i50 1=1,I11I

4a50 CAA( I)-CAA( I)+COIIT*Cg(l _4
C

C

K 403 IIRITr:(G,1005)
m1005 FOIRhAT(' S-DOIIAIZJ 0EtJOrMIATOR')

CALL PRCVEC(Crl,!IPI)
IPTE(G,10OG)

1006 FORIIAT( S-DOVAW1 NUMEIRATOR')
C ALL PRCVEC(CAA11Pl)
P0201 =11 !Ip1

20 A(I,=CAit,

900 RETURN
END)
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SUBPOUiTME POLPT(XCOF,COrF,',OfT,OOTI, Vr)

C COIMPUTES THEl RE'AL ANJD COMPllLEX ROOTS OF A RE.AL POLY!OrI *IN.
C
C PCSCPIrT[071 Or PARAIIETrRSW
c XCOF -VECTOR or i:.i COrFrICIE:1TS OF Tl~r POL.YIVIIAL
C onpi:r.:: From. S.IAI.LF.ST 10 I.APGCS1 PO;,! R
c coF ur~: VECTOR or Lr'IGTII t1+l
c P.i -OPD.1r OF rOLY:JOIIIAL -

C ROOTR-RISULTA'IT VECTOR Or LEUlGTII It CONTAVII'MC REAL ROOTS
C Or T:IC POLY'IOMIAi.
C ROOT I-RESU1.TAN'T VECTOR OF LENGfTHi t COIITAU*:1.*G Tiir A
C CORRSMIDI:S, i:AGINARY MOIS OF T!IZ POLY'iO:i*L

C ER -E[RRO!, CODE: MhEnr-
C tER O NO0 ERROR

C IE2 [[.. 11 LESS. T~IA~l 30I
C I ER=1 M LRESE TAN 3G!
C IEP~l U:JACL TO 1E1MMHuh! ROOT I11Thf 500 i:lTErlATIO:iS
C ON 5 STAHTiWC VALUFS
C iEr,-t. itiici oRnP COEricIENT IS ZERO

- ~Di':nSIOII XCOF(1 ).C~r(l),ROOTR(1),ROO-i (1)
DOUIDLr PRECI SIO 10 OYO,XYXIIPt,YPRUX11IYVY1 ,XT,(),XT2,YT2, StltiSo.,

C
C Li1ITED TO 3GTHI ORDER POLYNIOMIAL Or LESS.
C FLOATING P0 WT OVERFLOU MAY OCCUR FOR ii1(M OR!%r.R
C POLY~JIIO*l,,.S PUT WILL 14OT AFFECT TiHE ACCURPNCY OF THlE RtSULTS.
C
C MIETHIOD
C ilhiTOIl-PAPH~SO1l ITERATIVE TEC!I.i Il QUr. THE ri lAL IT!:RNT lOWS
C 0O' EACH ROWT ARE PERFORIMED USING TiHE ORI(t'!AL I'OLV'ItWiA!.
C RATHER *riAII T!IE R"PUtC"EP POLYN0OWIAL TO AVOW' ACCUr:.L:LT~n
C ERRORS IN! TilE REDUCED POLYNOi:IAL.
C

ER2'l .00*50
TOL-1.00-3
IFIT=3

I ER=I)
IF(XCOF(;I.1) )IO.25,1O

C10 1 F(M) 15,15,32

C SET ERROR CODE TO 1
C

15 IER-1-I 20 IFMEP0203,201,200
200 WRITE1i3,203)I1CR -

203 FORICAT(1X,'ERROR CALLED FROMI POLRT, IER =',13)
201 RETURN
C
C SET ERROR CODE TO 4
C

25 IER-4
GO TO 20

C -

C SET ERROR CODE TO 2
C

30 IER-2
GO TO 20

32 IF(tJ-3G) 35,35,30
35 UX-iJ

IIXX-1J4+ 1
142-1
1j1 - 11+1
DO 40 L-1,hKJ1
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40 COr(IT)XCOF(L)

c SET 1111TIAL. VALUES

I45 XO-.00500101
YO=0.01000101

C ZERO 1111TIAL. VALUE COUN~TER

IN'-0
5O X-XO

C I1lCflEtWET INITIAL VALUES MID COUNTER

XO=-10.O*Yo
YO=-10.0*X

c SET X A~ID Y TO CURR.ENT VALUE

A'-XOA
Y-YO

G0 TO 59
55 IFIT-1

XPR-X
YPR-Y

c EVALUATE POLYNOMIIAL AID DERIVATIVE.SL
C

59 ICTO
60 UX-O.O

UY-O.O
V -0.0
YT=0.0
XT-1.0

IF(U) 65,130,65
G5 DO 70 1-1,;l

L -11-1+1
TEIIF-COF 0I.)
XT2-X*XT-Y*YT
YT2-X*YT+Y*XT
U-U+TE14Pt XT2
V=VTEIIP* YT2

UXvUX+FlI XT*TEI,!P
UY-UY-F I*YTtTEMP
XT=XT2

70 YT-YT2 s

sutisQJx*Ujx+UY*UY
IF(SUMSQ) 75,110,75

75 DXO(V*UY-U*UX)ISti!SQ

DY-- (U*UY+Vk'X )/SUI4SQ
Y=Y+DY

YSS-Y
IF(YSS.F.Q.0.0D0)YSS51.OD0 _
IF(XSS.EQ.O.0D0O)Xss1.oDo
ER1-DA6S( PX/XSS)+DABS C YIYSS)
IF(ER1.GT.ER2)flO TO 73
ER2-ERl
xS-xSs

7S IF(CRI TOL)100,30,33

- ---



C STEP~ ITERATION COUUTERj

So ICT-ICT~l
IF(ICT-533) G0,35,S5

85 IFIT100,93.100 11
90 IF(ItJ1-5) 50,95,95

-~ -.
C SET ERROR COVE TO 3
C

Y -YS
ERI Cr%2

100 DO 195 L=1,:IXX
T-.RJI1-4 1

r El 1P-xCCF MT)
XCO 1'0 T ) -C OF ( L)1

105 COF(L)-TEIP
I TEI'Pz'

!-I TEZIP
IF(IF11) 120,55,120

110 tr(IFIT) 115,50,115
115 X-XrR

Y-Ypl,
123 IFIT--O

GO TO' 14J3
130 X'3.3 1

fix =:I% -I

135 Y-a0

ALM; N, X -

145 DO 153 Lm2,A

155 ROOTI(:12)-Y

I F(EI .G,'T.T3L)IfP ITr(G,5S4)-J2,r~1
554i rortl.T(iX.,'CrmiO1' 0: ',13,'T!i rODT IS 1,!1).3)

tF(SIMSQ) 163,165,1501
160 Y'-Y

GO 10 M5
165 IF M) 20,2O,45

Z~ ~ 56
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SUrwROUTIIIE PLOT IT(X, fir, IIPT1, 2,13 1 XX,ISC, SCALE.)

Rr.AL*S XNXXVt
DATA I M!/ II*.1i+, 11 13, ML, 1115, 1IM, 1117, 1!1^, ig/

0)0201 Ia1,97
201 IN I ) -I1

P0200t', -

J-12' I41
200 IP(J)-II

IF(II1-3)15. 15,17

GO TO 1~3
17 IIP=3

XII.AXX(I J) L
DO1I t 2,!:PT

2 1 r.(XIII JXI J) 11, 4

GO TO 1
3 XfAXX( J)

CO co~I '-vIC

111~-1 11(J6X1

X:!ANX -XX 1l

V 0117 J -2 ',r
IF ( X!A X .L T I XJXAX X IX Ul I

117 CO'll I IIU--
D31I13,l'?IF

116 I-SCAL;!'. .1 TO 11~4

XIW1(W) - . ,t(X::A(J) (1. O-SCALE) WNW J(...C~ r))
114 Xl!Xj)=Xj.j\,F

XI AX-XI:l(J)

)JII :-XI Il(J

IF(XX.LT.X:I)Gn0 TO 53S

XSAV=XX
GO T0 507

5JS 11AX -O
xLSAV-X~i

5 lAX-Xt'.AX+XX+1.MlV30

tF(XX.t1.n!l)^,O TO 513

ilki
GO010 6

M51S MA.X-O 5

-~ ~ -
* -l
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XSAV-X
6 XZ=ALOGl0(XSAV)

JJ,.xt
xx-JJ
JJ =JJ -1
IF(Xil-XMiE.O. O.A~l.XSAV. LT.! .0),JJJ-I
TEU=1O.01*JJ
K-XSAV/(TECI*C .0)

I F(XIII!J. L T. 0.0)f1-- CK*1
XX-XIlA, TEll -

505 XU-XNtl.0D

IF(X.*I.LT.XX)%^.O TO 505
Kt',AX=Xtl
2 F ,1X ,111 t,3 MX-~l1
GO TO 1112

503 1 XIA.T0. O)rs=-(K+1)
Xnl ;J,/Ti ENi

KX-K

504i Xii-XII-3.O0
IF(Xtl.GT.XaX)GO-TO 50,

1112 X:()l.A'E

tF(ISC.-!E.1.Ofl.NF.EQ.1)GO TO 119

fl12J2,l

119 DO112J~1,'lFF

7 F(1+1) =F( I )+tfll

IIRITF(Ci103)J,F
100 FO!I'AT'(;X, IrunlCTlON'l, 12,7X,

9[1 2 .4)
112 IRITC6,136) IC11(J), IP

106 FOU.I~T5X,'SYfIIOL I,1X,A1,1X.,97A1,/,33X,07Al)
DOS 1=1,97

8 PL(l)=IP(!)
D01131=1.,~F

113 F(I)=9G030 (XtX( I)-XlhlC)I
D0001 =1, TiP

600 IS(I)=1
lFlP.EQ.1)ASSIGtl 1001 TO I1PPP
lF(IiP.CQ.2)ASSGI 1002 TO IIPP? 

_

IFCTJP.EQ.3)ASSlG4 1003 TO :rPPP
D09J.I11 12,13

KIIAX1 
j

6331 ri-97

ICC-IIIML

GO TO 6l44
662 K-1

ICCC Ii IL
GO TO G44I

633 ICCC-ICII(t)
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6IFFII061,0,0
6011 DO6O2LtISIK
602 IPL(L)-ICCC

I F(iKt.1I h!.GT. IS I ) rs'i:1=[ I 
I F (KtIX.LT.K) 'I4X=K
GO TO 603

601 D063I4L=K,ISI
G014 IPLCL)=ICCC

I F C Ki II.GT. Q~ 1tttl*:K

603 IS(I)=K
10 COJT I HUE

GO TO rUPPo(1001,1332,1003)
1001 I#RITE(G,102)J,X(J,!),IPL
102 FORH1AT(lX,I1;,E1?.Z4,1GX,97A1)

GO TO IZ
1002 IIRITE(6,103)J,X(J,1),X(J,2),IPL
103 FORfl:AT(X,I4,2El2.4,z.X,97Al)

GO TO IC
1003 %IRITE(G,104)JX(J,1)X(J,),XJ,3).IPLI
1014 FORhlAT(1:,Ia3E9.3,1X,97A1)

19 IPLCI)=IP(I)%
9 COI WE

1RT6, 105)
105 rom,,guaT11)

RE TV R
ElID

It SUBROUTIIUE RESPOUI(X,J,t,G?tAXLA1DA,1!P1)
DIMENS~SION~X1~()Gl1A1.LtDU
REAL*.^XSAV,G.AX fA,XLA4D,

lip.=I,
I PUP2=Ul.
DO 19 1 l 1fPUP1

19 XLArTflA( I ) =O. OrDO
XSAV=3.0ODOD
DO 20 K=1,I1P1

=JIFC:I.EQ.1)GO TO 25K

21 XLAIr)A(J)=XLA*.iDACJ-1)
25 COIT I NUE

D0 22 1=1,!l
J=IIPIIP2- I

22 XLA?DA()=XLVl)A(J-1) -

XLAMDIA( 1) XSAVI XLAIIDA(11P1 )=V(K)
XSAVO. 0000 ;J
D0 23 1=1,11P~lPl

23 XSAV=XSAV GAftJA(I.41)*XLAIII)A(I)
IF (DACS(XSAV) .GE.1. 0010 )XSAV=0. 0000

20 X(IKi=XSA'J
RETUPII
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SUISROIITI.'E ERRODR(XREC,.VGA"IItIP1,::XLAt1DAXORG)
DI!IIENStON XrEC(1),V(1),XORZG(1)
DI1IEI!SIO.'l VVV(20)
REAL*.' GAf.11A( 1),*XLAIOA( 1), W.*ISWIV2,AVGQ
CALL RESPO:I CXRECC.V, U,GAtl -A, XLA?4flA,?4.'Pl
AVGIl=DO 0

0026 I -1,l'P1
SUlIV2=SU!!'12+XO.RG( I ) *XORG( I)
AVGQ=XORGC I)-XR:-C( I)

26 AVGII=AVGc;.I'WGQ..WVGQ
AVGIu4=AVGI:I SLUMV2
AVG.Q=DSQI'T(AVGu1)
AVGQ100.O.AVGQ
AVG.!=103.3*AVG..
%ElITr(6,27)AVGI,AVC-Q

27 FOPRBAT{1X,*P:r- CENT M;EAN POUCR ERrfl OF REC0OISTRUCTttP'.F3.3,///,
IIX,'PER CE;ZT OF SQUARr ROOT OF MIUER ERROR 1*1 1ECOSTRUCTO:s',F8.3)

RETURN
E!JO

SMROUTI'F LM ,~~,:wx
REAL*3 A:A.)o1,r1,nI

IIP:IP2=1:. 2

MI, I )Ir;

003131=2,:"P

313 AIJ=AIJ1-()AI1J1)nLJ

A([ 4,.'P)=J.' )Po

MC t 3111 A( 1.0)

up 1 E61 C.5)
1035 FORI:AITC1,,A~AfI'

CALL PP: AMC.tU2::~2r

ENID

DOUBOLE PUrCISIO:N A =
C TIlS StlIr.ClITlI OUTtls DO1JILE PRECISION nOU.tE Di:~:i~oARRAY

2 UPlI T!S, 3)A( ,J),J=1,!)
3 ORMIT(X, 10-13. 5)

IIRITE (6.1)
FOP':,TCI)W
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SUBROUTINIE PRCVEC(A~tl)

C TIIIS SUIIROUTMlE PRINiTS OUT A COMPLEX SItIGC~L DIME'lSlOlll!D ARM~Y
C A COMIPLEX UMBlIER OF TIIE FORM A * J IS OUTPUTTEn III TlE FORM
CC A, nl J) WHERE J *SQUARE ROOT OF -1

DIM~ENJSIONJ AM1
COMPLIEX*16 A
WRITE(6,2)
WRITE(1,M)A(I1u,f A

1 FOlHAV1X. lM(,)17.10,111, D17. 10,31i M)
%IRITE(Go2)
WRITE(,2)

2 FORIIAT(/)

RCTUI
END

SUBiROUMIE PRVCC(A,N)

c T1IlS SUBROUTI1E OUTPUTS DOUBILE PRECISIO-* SIlIGLE flllMMIS5rtlrflD ARM~
DIMENJSIONl AM1
lOUIBLE PRE~CISION A
I'RITI'(G..31)
WRITE(G,1)(A(I -1..r4)

1 FORHAIIA X,1Ol1M.5)
WRITE(6,31)
IlRI1E(,31)

31 FOIUIAT(/
RETURNJ

SUBROUTINJE POLCO.'l(C,R2,K,:l)
C
c A POLYIIIOI.IAL COWSTRUCTIOI PROG~RAM NEEDED FOR ZTOS£1111tl CM rl

Am Cot.IPLtX*1G C,R2,COliP

EQUIVALEUCE (COIIP,OC)
UPI -if+ 1
0010 1-2,111"

R2C1)-1.OD,0

COIIP"C( I
IF (lIIEQ.K.Olt, CD Q. .D0A!n.lC( 2). . DO) )GO TO
DU2JJ=1, I

2 flC)-R2(l)*C( I

COUT I IhUr

RETURN k
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HPMIN\' PROGRAM

LISTING

U IRJUIAll !IAI.L: IIPiI II
C DOUBOLE IRECISIOII MA~TRIX ItIVERSIOI PACKAGE
C

DOUIML PRnCISIO!I TIIRESPDI.,Q1FTn.tI

OOUI*.Lr PimcisICo F\c,rRACFF.NC,CRROR

COMMIlJ / SOL/rRAC

H AX 2 0
WKHS-15 .0100
WRITE(5, 100)

WRITE(G 0) Ii1, I SPoISQ, I PERT, ISL ID, ICOIID, ICORCT F
%IRITE(C.,100)
DO 200 1=1,ti
REAO(5,250)(AA( I,J),J=1.1N)

IF( 1C01D.r.Q.1)AA( I I)-=AA(1I ,I)+TfI
200 COITI IUE

CALL I!EQUAT(1I.IAX,AA,A)
IF( IPRIIIT.EQ.1)WtPdTr-(G,3S0)

IF( IPRI:'IT. EQ.1 )CALL RruAT:I,flAX,A)

PD IF-=0 DO
QO IF =0 *000

c ~ ROU SCA.I IIG
IF(ISP.IIE.1)GO TO 10

CALL IISCALE WIiAX,TIIRES, I S, PD I rA, P)V

IrF( I Irl IT. 'Q, I)VIII TE(, 127)

IF(IPRINlT.FQ.1)CALt PRtIAT(IIIIIAX,A)

tr(IPRIIIT.1Q.1B1RfITE(G,103)
IF(IPRItIT.EQ.1)CAL. PRIAT(?,tIAX,P)
CALL DIIIV(I,11AX,P)

I I ( PRI IT. 1)R ITE 6,602



M-lId 1- --vm---

IF( IPRIIIT.r.Q.1 )CALL Pill AT (11,flNX, Q)
20 CONT I:UE
C EIID OF SCALINIG

Ir(IPRI1HT.CQ(.1)CALL PRIAT(H,MAX,A)
CALL I4.(Vf(,NTW AX,.N,C)

IM(PERT.NQ.O)GO TO 93

C PERTURB~ IATRIX A, CnA+CFAC)*CD)IAG A)-A+FAC*(D)A)
C

FAC-1.3D-O'&
DO 30 IlIC-1,1
FAC-FAC*3 * D-fl2

WRIhE(,530)FAC
DO 35 1-1,11
DO 85 J-i,:i
DA( I,J)=0.0DOO

IF(IPtIRT.GTJ0IG0 TO 32
ir(.tw.IPERT)GO TO 33

82 coilrI:2uc

83 CONT I NUE

85 CW~T IfUE
IF(IPRIIHT.EQ.1) WRITE6,130)

IF(lI'ERT.(iT.!I.A!ID.ISLID.EQ1.1)CO TO 90
IF(PEflTLE.lJ)GO TO 90

CI
C 11O1 'C' IS THE I'ERTURREN, lIATRIX I
C INiV A- IIV C+ FAC*CI;JV C)*(D)A)*(IIJV C).(FNC)**2*((I:IV c)*
C (A)**IJC4.
C IIAPPRX-1 FIRST 2 TERIIS OF THlt SERICS FOR IIIV A ARE USED
C v2 FIRST 3 TERMIS OF TIlE SERIES FOR, MV A ARE USED
C

NAFI'PX-2
CAL.L DPERT2OI1,IIAX,:IAPPRX,FAC,C,DA, 6)
IIIITE(G6, 14 1)
CALL PI'HfAT(ItiJAX,B)
GO TO 2295

C APPLICATION OF PERTURBATIcG.) METHOD OVER ------------------------------
90 COUT I NUEICALL GKtr.CT(:I,1IAX,C,I',D[A)

IF(PDi F-QDiF)66G,6'36,GG7
666 CALL. CORCT(C,I1,H,lIAX,5,1)

GO TO 668
667 CALL CORCT2(C,,tJ,.'AX,5,1)
668 C014T I UUE

IF(PERT.EQ.O)GO TO 2295
IF(IPEIlT.CT.I.AtI.ISLID2rQ.1)GO TO 2291 A
CALL DPERT1(A,G,N,I1AX,FAC, IPEPT) I

2291 CONT IUE
IF(PERT.L.IJ)GO TO 2295
FFAC=FAC'1 .OD-04
DO 91 K-1,11
11111TE (6, 300) K

300 FORIIATC//,1OX,'VALUE OF K -1,12,I)
DO 89 1-1,,4
DO 89 J-1,11

89 G(I,J)uC(I,J)-FFAC*DACI,J)
IF(PDIF-QDIF)777,777,773

777 CALL CORCT(G,,1,IJtAX,5,O)
GO TO779

Rik 778 CALL CORCT2(G,BN,1t4AX,5,0)g
779 CONTINUE

IF( K. LE 4) FFAC-FFAC*10. 0000
IF(K.GT.14.AHID.K.LE.7 )FFAC'FFAC*1.773279r00
I F(K.GC. 8)FFAC-FFAC*1.1St.782D0
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91 C01TT HAW
2205 COINTtI NUE

ir(lIi'T...AII.ICO!,CT.CQ.0)6'O TO 733

580 FORIIAT ( , 'r I! A1 11) FOR IMDPRlOVF)MCtJT)
FRACu4* 10

I F(Pnir-QI))7 1, 731,782
731 CALL CORCT1A,1,1,.AX,14IT,O)

GO 10 783
782 CALL COFlCT2 (A, ll,.Il',AX,HI T1, 0)
783 CO0N4T INU:

WHlTE(,109)
CALL PRN.AT(Uj~tIAX,V1)

CINJVERSE AA -(INVERSE Q*lVE'S AYt(IVERSC P)

C
CALL lWrQUAT(I,. AX,!';,C)

IF( SP.:Q..A:J. IQ.E.0 O 92
CALL C(AUAXf,)
i r(I SQ. CQ. 1)CALL PI T ,:,;~~x c ,(,B A
iF (IP. Hr *1) CALL WCCLIAT0i, WAX, A, C)
IF (ISP.E~Q. 1)CALL rT(:r, rtxFC,,PAr,)

92 CONT IUE
I F( 11) I I IT. Q.I) WRI T C( 6, 10 7

ir(PPI!1V-QI AL F)93A*,03,9XC

93 CONT I ME
CALL )UTQ,:iWXA,,fl)
IF(ISP'.UrQ.J)GO TO 95
CALL IJ.(, , ,AFC,,,P,)
CALL D1IV(,WIAX,P)
CAL.L (I ULT(H,;4,H*,l-AX, FAC, 0, PPl,6G)
GO TO 95

CALL DPWOT(?1I,,,iAX, PAC, 0,!I,A,G) I

IF(ISQ.!:Q.0)GO TO 3!
CALL ~IT(J:,HW~ A,) ,,B
CALL DIUM(JnA,.
CALL PII'Ul.T(,HI,HI,A(-,FAC,0,B,Q,G)

95 COIITIIIUC
I IF( I PRI 11T.EQ. 1 )WI~R(, 103)
IF( I PRI HT.CQ. 1 )CALL PIW-AT(H,IIAX,G)
CALL IS[PRfOI,(.,1AX,G.,Z[UOR,%
WJIlIT.(,249') -

I F( I PI:It1 C1Q.0)STOP IIf
80 COUTIHOL V

100 FOIltIIAT(II/////////////////)
101 FORII1AT(5X, 'OIAGOZIAL SCALE 14ATRlIX, P' )
102 FORMIAT(S, ' iWVmhsF P MAIRIX' )
103 FOIlWAT(5X,'DIAG0OHAL SCALE MATRIX, Qi')
1014 FORIAT(S, 'INVERSE Q MATR IXV
105 rORt4AT(5X,'ItIATRI%: A')

106 FO[IIIAT(SX,'IIIVCPSE A IIATRIX')

108 FORIIAT(5>., 'PRODUCT OF ORIGI'AL IIATNIX, AA, ANID ITS COMrPUTF.P Iliv7Rs

109 roI.IAT/,1OX,' IMPnOVCD IH'JERSC IIATRIX')
127 FOlRMATUOX,'(LOW) SCALED rlATRI-N: A')
130 rOtZ(4AT(5X,'C-A+ F.PS*D IIATRIX')
141 FOIU1AT(5,' 10M() - IV(C) + EPS*( CPS** p5 *( ))

,120,/,ZT10X,'IPETI DIWE::SIOi 'IS,/,IXIS - ',12,/,1oI)-,12, -

2/,1OX,'ICOR'CT -1,12*//)
2140 FORI4AT(912)
2149 FOIA(X

250 FORMI (3025. 13)
350 FORMAT(/////,SX,'ORIGIIAL MATRIX, AV)
600 FORIIAT(//,5X,'FAC-',020.11,/)

STOP
END

65 'I
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rI

SUDGiOUT INE GI',RDCT(,,I'AXX,Y,CCC)

RCAL*3 X(Zi.%X,1),Y(ItAX,1)AD,C, E,ET,CCCl$AX,) 4W

COIMOU /PrOD/PDI[F,QOI F
D0 6 I.1.N
D0 6 Jm=1.II

L-I

C FIND LARGEST EIITRY A(L,1I) III LOWlER DIAGOUiAI SUIIMATRIX

DO 18 JuI,ti
DO0 18 3 :,
lF(I)AllS(Y(IK,J)).LE.B)GO TO 18
B-DAUS(Y(K,,J))b
L=K

18 CONT IHUE

C 1IJTERCIIAtiGr ROWlSL
IF(L.[Q.I)GO TO 24
DO 23 J-=1,11
C-Y(L,J)
Y(L,J)-Y( I J) Ir5

c. IIITERCIIANGE COLUMUS

24 IF(II.EQ.I)CO TO 29
DO 26 J=l,il I
Y(J(l)Y(.I

28 YCJ,I)=C

c BEGIN SWE'P COLUMNIS TO THE RIGIIT i
C ARRAYS M'Ui(,.) .IJU,1(2,.) KEIEP RECORD

c or ROW AND COLUMVI INTERCIANGESIc
29 =Y N14, I )-LA

Y(I, I)=A
DO 42 J=1,tlAN
IF(J.1Q.I)6O TO 42
C=-YC I,J)
Y( I J)=O.0DO

DO 41 K11

EuYCI,J)*V,+0
C IFCDAIS(E).LT.1.0D-10*DABS,,n))Ecoo.oDo
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42 CONT INUE
43 A-0 I
C
C RESTORE COLUMNS
C

DO 58 I'-2,lI
J=101- I
K-ISUM 2, J
IF(K.EQ.J)GO TO 52
DO 51 L-1,11

51 Y(J,L)=C
52 K-IIUlI(1,J)
CL
C RESTORE ROWS
C

IF(K.EQ.J)GO TO 53
DO 57 t1 11

C=Y(L,lZ)V
57 Y(L,J)-C
58 CO1NTINUE

DEThA
IIRITE (G6.101) DET

101 FORM4AT(/ 1X, 'DET OF DOIG MATRIX IS ',1)24.17)
DEThi * DOM/ET
DO 111 1-1,11
DO Ill J-1,N

Ill Y(I,JI)-Y(I,J)*DET
IWRITE C6, 102)

102 FORIAT(/1X,'Il.VFRZSE MATRIX IS '
C
C
C

CALL PRMAT(NIlIAX,Y)
C
C

r)O1001,:I1

66 IF(PDtr-QDIF)GG,GG,G7

GO TO 100
67 CCC(I,J)=CCC(I,J)+Y(IK)*X(K.J)f
100 CONTINUE
C

_ C
C

WRIME6,103)
VE IF(IPIflIIJT.EQ.1)CAL. PR',4AT(N',flNXCCC)

UP CALL lIKRROR(II,IIAX,CCC, ER)
103 FORIiAT(/lX,'PRODUCT OF INVERSE MIID ONG ItTRICCS *

RETURNI
EIID
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SUBROUTIN4E COIZCTI(XY,t,iAXXIITCflIPl)

COIVIOIJ /SOL/PPRACI
DOUBLE PRECCISIONJ X,Y.F4.oZt

DOUBLE PRECISION FRACIrRSAV

DO 290 ITER-1,RITER -:4
ER2-1.0D10

FRACOI:RACI
ER1=0.ODOO

C CALCULATC EPROR NATRIXF=X*Y- I

0)0 210 I11,

DO 210 J=1,IJ
F( IJ)=0.00
D0 200 I1*,1!

200 F(',J)-IF(I,J)+X(I,K0*Y(K,J) S

Elt I ER1 F ( I , J) *F( I ,J)
210 CONIr I HIM

liITE (6, 320) lN1Z
320 FORllAT(//,I0X,'ORCIIJAI Rusc ',D15..O,/)

IFC IPR.EQ.1)N-RITI:(3,300)

IF(PR.Q.1CAL PIIuAT(,12,F)

DO 230 I=1,U
DO 230 J=1,fI1
E( I J) =0. 0)
DO 220 9-1,11

220 E(IJ)n[(I,J)4Y(I,rK)*F(KJ)
230 CONT INUE

lFC IPR.FQ.1WRITE(6,310)
IM(PR.CQ.1CAL. P.RIIAT(11,12,C)

235 COtJT1:11UE
ER2 F U
CALL flE(U%T(.20,YZ)

-- DO 24*0 I1,,1
1)0 240 J-1,fl

24 0 Z(IJ)-YUI,J)-FRAC*E(I,J)
CALL 1)MIULT(:J4,I,U,2,FRAC,3,X,Z,F)
CALL I4ERRORCIJ,20,E)

ir(ER.GE.ER2)G0 TO 230

FRAC-FRAC*0.5D000-a
GO TO 235

230 CONTINUE

DO 270 IsbNU
DO 270 J-1,11

270 YCI,J)-Y(?,J)-FRSAV*E(I,J)
290 CONTINUE
300 FOPI.AT(SX,'F IATR IXV
310 FORIIAT(5X,'E IIATR I X
317 FORHAI(OX, INI1TIAL FRAC- ',DI1.4)

RETURNH
END
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SUBROUTVIE C0rCT2(X,Y,1.1,!'AXX.?II1 l* I rp)

COI10. / SO~l/rRAi,%
DOUBLE: PREcCISION X,Y,F,'.,Z

DOUBLIE PIRCISIONlrAI,~~

IRITE(5,317)FRACIN
DO 290 ITE:5-1,NITEIZ
ER2-1.01O
ER-ER2
FRAC-FRACI
ER1=0.ODO0

C CALCULATE EPROR IIATPIX,FaYtX-1

DO 210 1=1,Nl

DO 200 KalV
200 F( I,J)-F(,J)Y(I,K).X(KJ)

Ecl-r.,r(I,j)*r(,J)
210 COJT I NVE

%IRITC(G,320)ERI
320 FORliAT(//,10X,'0RIGIVAL RIS2 .a'Dl5.8,/)

k IF(IPfl.-Q.1)WPITE(G,330)
IF(IPR.!Q.1)CALL PR,':AT('I,j2,r)

tC CALCULATE I11PROVE0 INVFRSE,Y( ImIW"ovED)nY-r*y
IT C

DO 230 I-1,:J
DO 233 J-i,:il

7sDO 22J 1.
220 E(I,j)=,(Ij)*r(I,)*Y(K.J)
230 CO:JT 11! U

235 CO:IT I:UE
ER2=ER
CALL t:EQUAT!!,20,Y,Z)
DO 24~0 1-11
DO 24.3 J=1,!l

CALL D)'ULT(.'J,I!,?1,2I.FR.\C.0,Z.x~r)
CALL tERROR(11,23,FER)
IF(ER.GE.EPR2)GO TO 730 I_
FRSAV=FIIAC
FRAC-FRAC*0O 50
GO TO 235

230 C014T INUE
D0 270 1-1,1
DO 270 J-1AJ

270 Y(I,J)-Y(11 J)-FRSAV*E(l,J)
290 CONT I NUEl
300 FOIIAT(5X,'F ZIATRIXV')
310 ForRf-AT(5, 'E !.ATRI.'')
317 FOllttT(10X.'ItlITtAL FRAC- ',D1I.',)

RETURI:
ID
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xx

SUI3U0UTIIIE DPIERT1(X,Y,!,!AXXFAC, I PERT)

DOUSLE P"ECctSIO: X,Y,U,VF
DOUBLE PRECISION~ FAC,ALPI.%,ER
CO:1.110:1 /PR/ I PR

C
C

£Pfl=2
IPR1l
WitI TE(6, 91)
CALL o:ULT(,!,:!,23,FAC ,0,X,Y,F)

2IPI.GE.1)CALL PRVtAT(123,F)
CALL I1~~(!2~.n
WRtTE(6320)ER

320 FOVIAT(//,I3X,'ORIGI!IAL WISE ='05CI
C
C CALCULATE IMiPROVIED INVERSE
C

ER=FAC
FAC=FAC*X( IPEC'T~IPPT)
ALPI4A=Y( I 'CR~T, I 1-21T)
ALPalA=1. 3DD-FAC*ALPIIA
ALPHA=FAC/ALPIA I
I F( I PR.G7. 1):II TE (. 201) FAC,ALPIIA
FAC=I:R

d(0I Y( I,*IPEnT)
V( I)=Y( IP[:T, I)

150 CON~T INUE I
I (I R EQ. 2I=1- T ,01(U =,J

D0 240 J=I,!£
240 F(I,J)=U(I) ALPI.A*V(J)

DO 250 1=1,11
DO 253 J=1,11

250 Y(IJ)I=Y(IJ+F(IJ)
CALL OMULTC;J,,*'I, 2*1.FAC ,XY,F)

- - ~IF(P.C-:1)CALL PrIA.(:,23,F)
CALL OCI2 FE)
WHI TI: (6 1 39)

CALL rR::AT(ll,f:AXX,Y)

WR IT E (6, 91

1 F 0.41- 5X

95 FORMr~T(X, 'AKN PT: A* IIJY(C)'I
__97 ro0I;'AT(5X,'APE-tT: A*I:PR-IVEV IIIV(C)',I)

201 FOI.T (2X, 4'A1 5 3IS~,D1..N)I=,05'./
300 FOWIAT(//F::T) I'
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SUBROUTINE DPERT2C1J,ItAX 11APPPX,FAC.c,nAB)
DOUBLE FRECISIOU C(IIAX,1),DA(tt.AX,1),c(I4AX,1),G(20,20)
DOUBLE PRECISIO.11 FAC,PDIF,nDIF
COuIVOtJ /PROD)/PDIFQDIF 2

CALL GKRDCT(3,I1AX,C,8,G)
IF(PDIF-QDIF)51,51,52

51 CALL CORCTlCB,11j'AX!J,O)
GO TO 53

i 52 CALL COntCT2(CB,!:4AXfr:,0)
53 COJT ItE

CALL flIIULTC;I,Ul,!.',IAX,FAC1,B~l,DAG)

CALL MIMA.

IF(!:PPntX.E--.1)GO TO 3

CALL D.'!LT.u.: :XPAC, 0, GG, A)
CALL O4'ULT(:.,:,:!.-AX,FAC1 0,r.A, 0,G)
11111TE(,121)
CALL PRf1.ATC'Ij!tAX,G)

87 COUT I"UEEI
DO 93 J-I,:l

90 CO;JT IRUI

121 ForlAT(5X,'EPS*I;1VCC) tf*I::V(C) E PS**2*(IlIV(C)*D)'*2 cl:,VCC)
RETURIU
END

SUBhPOUTHJE IlTnAXZS(IJ,ltAX,X)
DOUBLE P'PECIS!ON* X(tAX,),Y(20,21) M-IAl

Do I I-i,:I

DO 1 J-1,!!

DO 2 1=1,1!
DO 2 J i1t

2 X(I,J)=Y(I,J)
RETURNJ
ENDO

SUP.--OUTIIJEUAT(::.IA 'X,XeY)

DOUBLE PRECISIONJ X(lAX,1),Y(:lAX,1)

C EQUATE MIATRIX Y TO MATRIX X

C

DO0 J-1,11
Y(I.J)=X(I.J)
rETUW;!I

END

71314

k~ - - ~_-~~-. -~~



SUMI.OUTINC~~ ~ ~ ~ ~ ~ -'C~~it.X-!IES,)FXY

DOUBLE PRECISIOJ1 X(I'AX,I),Y(!1AX1,1),R(2'1,23)
DOU3LE rnt'CISIO-' T~RSLrOSOl,.(I!r,:.XY1!,I

C
c nlOW OR COttn1:i SCAL!!B^ OF :IATix x
C IS-1, Rfl: SCALIJ
C IS-3. COLUNQ' SCALIN:G
C

ZFRO=1.OV-50
Y"Xhil.Olo
IF(JS.[Q.))CAI.1 tlTRA!IS(.I,:IAX,X)
00 30 t=1,'!
T!If11-53. 0
DO 10 J=I.nj
IF(DARS(X(1,J)).T.ZElO)GO TO 5

GO TO 10
5 CO;I'TI;#t-

10 CONIZI E

ICT=O
DD 20 J=1,::
YC I~j)-0.030
IFMflI,J).LT.flT!fl)GO TO 20
ICT=ICT.1
BT0T=3TOT*3(IJ)

20 COINT INUE
STOT-ST0T/ ICT

I F(1; TOT. GT. Y- AX ) YIIAX !TOT r
DO 30 J=1,:I

30 COIT I:WE
D I F=YIIAX-YiU :l

IM(S.EO.0)CALL MTRAtIS(UIIfAX,X)
RETURI
END

SU3ROUTINE sL(':.,1XS SA0C

C DOUBLE PflECIS10.tJ t4ATfIX MULTIPLICATIO:I, CwA*3S
C

DO 10 IV1,1
00 10 J-1,L
CC I,J)*0.OD30
00 10 K-1,:3

CI)( EQI.,).KA( IIO)(I,3)=SCI

10 CONTIIJUE
RETURlI
EJND
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7------

SUBROUTINE~~~: Pt %(!,4X

103 OI'!AT(2Z,4(25.1,3X)

105 OR~tT(//
RZAL*^. A(.X~l

105 15 t LuT(//

WRITE(6,103)WIJ)JJ,2

1 0 15NI IN

15 OI TI G,13
104 C0;M'AlU

107 F 0 I!,ATCI

R1ETURN

DOM~E PfECISIO'! C(I-'X, 1), Tr.Il,ATEE
DOUCLE rnCISIO:N ERrOZ,%CR L
EP.ROVfl * 0103
AER-0.0GPO

00 1 I=1,!J

ATLM -)AS (T-1.11)

IPt()r=E:'ROT. E:) ,RTEII

ERRO1t=.rSQ.rT(:!.ROP)
VRIT E (6, 10 3)!'AW%,NR

103 FORILIATC12X,'(!WAT- I: Rf4SE=*,DlZ.' !A'D1
PET UR U

SUBROUTINIE DIIUV1,1I1AXX)

DOMUE PPEC!SION X(IAX.1)

C IVERSION OF DlIA~GONAL IMMTPIX, X I

DO 1 I-1,N
DO 1 J=1.U
IF..QJ)CI -1.01100/XC,J)

END)
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- APPENDIX C -

of In this appendix we present the details involved in Example 2, page 10,

of Chapter 2. The example deals with application of the identification technique

to data obtaired from a single-stage transistor amplifier. The schematic and

equivalent model of the circuit are repeated, for convenience, in Fig. C1.

. ' 3 C - C

- V 1 g 2  ,2  3 ' k

(a) (b)

Fig. Cl. (a) Schematic of Coinmon-Emitt,-r Amplifier Circuit.

(b) Fquivalent Circuit Model

From Fig. Clb, the following equations ma; be written by inspection:

! Y+g +(C +C3 s _C' V Y!

I" 1 V (Cl)

g3 -C 3 s 7 4 3 4
L J L]J

z C S

-where, by definition,

Y 1 1  (03)-g+C"

gi 1



i7M

S" L (G4)-2 1 /'l +c s (4

* .' j) and ((22) may be solved simult:eously, to yield the desired

r function, follows. From (CI),

-4Y 4-+(C-f-C)S ¥ I
1 ('2+3 1

- [ ~g3 -C3 s8,

g-• 2+g1 +C3,

: Substitut ion of equation ((15) Into ((22) y'iels the required expressi on, i.e.,
9  0 ,, g -C

V 3
= +g, (I s ) -C s

1 3 .4

g 3 Ls Y g s +C1.2 4

Simp) if i.:it fon of the expression for I(s) requires unwieldy algeli al man imlt iat-ion.

J; 1 Oicvi ther re not he presented. lowever, It call be shoWn thant (or ' a

I1(s) assinie z ne foilowiug form:

11(s) I ,
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For the particular transistor circuit shown in Fig. Clb, the following

parameter values are assumed:

C1 = 0.Ol1f C = 5 pf g 1  4m g3  40m?5 ZL =IKS (real)

C2 = O.Opf C = 0.Olpf 92 g2 = 0.5m^(

Substituting these values in Equation (C6) and performing the required simplifications

yields

8(107) (s-8000(10 6
H(S) =(C8)

6 6 6, 6(s+. 033 (106 ))(s+. 080 (106 ))(s+25.2 (106 ) ) (s+1205.1 (106)

A Bode (corner) plot of Equation (C8) is given in Fig. C2 . Inspection of

this frequency response shows that the circuit is broad-band (i.e., it poles are

separated by several decades). In order that the network transfer function bc

identified reliably, the spectrum of the input signal must contain sufficient

energy concentrated in the vicinity of the network poles and zeros (for excitation

and manifestation of these critical frequencies). However, it is not convenient

to synthesize -- and realize in the laboratory -- an input having such characteristics.

Therefore, the network function may (and in this case will) be broken into

constituent functions, each of which will be valid for a particular frequency range.

Inspection of Equation (C8) reveals that an adequate low-frequency description

of H(s) is

HL(S) = (21.04) s2

H.. .. . (Low-freq.) (C9)(si. 033 ( ) (s+.080(109) )

which is valid up to 1 Mr/s. That is, Equation (C9) will dlosely
6approximate H(s) for radian frequencies below approximately 10 rad/sec. This

observation can be seen clearly from the Bode plot in Fig. C2.

1. Through similar considerations, expressions describing the mid-high and high

frequency characteristics of H(s) are obtained:
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£

6531.1I(10)
111 (s) . ......... (Mid to 111gh Frequoncy Transist ion) (ClO)" (.,;+25.2(06)

7 68(107 s-8000 .re6)
l(S 8(10 ). ...... . .....~ (lli1gh Frequency) (ClI)

(s+25.2(1 6 ))(s+1205.1(106 ))

Equation (CIO) will be valid in the
6 9frequency range from approximately 10 to 10 rad/sec, while Equation (Cli)

will be valid for frequencies from 10 rad/sec onward.

The identification technique may now be used to determine models

for the network behavior by considering each of the three regions separately.

Improvement in the methodology and reliability of identification of broad-band

networks (systems) is being investigated under a new research task. For

example, pre-filtering the output data in order to isolate the vari,.as frequency

regions is now being pursued.

-:- -

: -x

-607

.00!
-  

.01 1.|0,' 10 100 :K ft

Midband gain - 26.2 dB
Fig. C2. Magnitude characteristic (Bode plot)

of a wide band amplifier.
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i) Low Frequency Region

Our approximate description of the low-frequency behavior of H(s) is

given in eq. (C9). In order that a reliable model for this region be obtained,

via the program IGRAM, several factors must be considered. First, a careful

choice of the input must be made in order to excite the low frequency modes of the

system. We need to isolate these modes of the response, and will therefore

use an input signal whose spectral content is concentrated in the low

frequency region. A satisfactory choice is a single triangular pulse of

duration 125lisec. This signal will supply sufficient energy to the low frequency

modes and relatively small amounts to the higher frequency modes.

Next, we must decide upon a sampling interval, A. A useful rule-of-thumb

in making this choice is to samfle at a frequency f at least ten times the

highest frequency of interest. For the system under consideration, the highest

6
frequency of interest is 0.013(10 )Hz*. Thus, a sampling interval A = 1/fs =

0.25 psec should be quite adequate. Notice that while we are sampling at an

adequate rate for the low frequency modes, we are undersampling the high

frequency modes. That is, the system as a whole is broad-band and we are

sampling at a rate suitable only for the low frequency portion. Therefore,

frequency aliasing can be expected to occur. The effect of this aliasing, however,

(of the high frequency modes) appears as evenly distributed noise of relatively

small power spectrum density.

An important, but less obvious, consideration is the total duration of the

test record used in modeling. Whenever possible, a record long enough to have

a few time constants, say one to four, of the slowest mode must be used. Using

this criterion, a 1000 point record (MPI = 1000) for the network under consideration

should suffice.

ii) Mid to High rre uency Transistion

Out approximate description of the mid to high frequency transition behavior

of H(s) is given by eq. (CIO). Considerations similar to those made in the last

section yield the following choices. Realizing that a narrowband signal must be

. ..
* It is unrealistic to expect that the design or test engineer know the exact j

frequencies of interest. However, it is assumed that he has some idea of

the critical frequencies of the system.
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6

used -- so as to excite only the mid-high frequency mode (s=-25.2(106)), an

exponentially decaying sinusoid was chosen as the input signal. The center

frequency of this input lies in the frequency range of interest. The sampling

interval was chosen to be 0.01 Psec, and a 500-point record was used for modeling

In modeling this region, the option IBIAS = I was used. The reason for

this choice is as follows. Due to the low-frequency modes, a transient response

will appear in the system output in addition to the desired mid-frequency respons

However, over the short duration of our record (5vsec) this slowly varying

transient will appear relatively constant, resembling a d.c. bias. 1he option

IBIAS = 1 allows the program to separate this "bias" and hence calculate a

more reliable model for the mid-high transition range.

iii) Hih Frequency Region

The approximate high frequency description of 11(s) is given in eq. (Ci1).

The input signal used for network excitation must b narrowband (for ireviously

mentioned reasons). Thus, a slowly decaying sinusoid with center frequencv in

the critical region was chosen. Five hundred points of input-output ighals,

with a sampling interval A = 0.O0025jsec, were used for modeling.

Once the results for each of the frequency regions have been obtdined,

they may be used to synthesize the overall network response. This an ho 1.,ii

by correctly combining the model descriptions of the various frequencv revions.

Details of such a synthesis will not be discussed.

9Az
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APPENDIX D

s-Domain to z-Domaln Conversion

Sampled_Signal

When sampled at uniformly spaced time instants kA, an analog signal

x(t) yields a numerical sequence - {xk), where xk x(kA). To this

numerical sequence we can associate a continuous-time signal x*(t) =

X 6(t-kA), called the (ideally-)sampled signal. If the original signal is

bandlimited by 1/2A Ez, then x(t) can be recovered from x*(t) through low-pass

filtering, and the sampling process may be regarded as a one-to-one mapping.

We define the Laplace transform of the sampled signal in the customary way;

this gives

XO ()-sA k
=k = -l V xk(e ) (D)

Now, since the z transform of = {x ) is

kk

k=- 2O

we make the extremely interesting observation that

X*(s) = X(z) sA (D3)
sz-es

Note: It should be borne in mind that the substitution z=e into
Xrz) yields the Laplace transform of x*(t), not of x(t).
Under the condition of bandlimitedness (by 1/2A Hz) this
substitution yields a transform that agrees with X(s) in a
suitable neighborhood of s=C in the s-plane.

We now focus attent-ion on the matter of conversion of transfer functions

from s-domain to z-domain and vice-versa. An exhaustive treatment is given

in reference [17]. Here, we summarize three of the most widely used conversion

techniques.

1. Logarithmic Pole-Zero Conversion
sA 1

This technique uses the relation z e , or s = Lnz, upon the poles

Xand zeros of the function under consideration. Thus

H~~s) £ m"" (z-l)£ z6)(4
s 'a (s+b i )

li ) . 1 + - nz A(n-t-m) i=l
n n
Ut (s+a) n (z-i)i~l 1-1 ! [
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where

cxi = e DSa'

-b .A11
e D5b

2. Pulse-Invariant Conversion

This technique has the merit that the response of 11(s) to an input

Xpst) = -  x k p(t-kA), where p(t) = square pulse over (0,A), coincides
pulsek

with the response of 1(z) to the sequence i = {x. }. In many cases of practical
K 

I

interest (t) is an excellent approximation to xt); in such cases this
Sulse

UK technique of conversion promises close agreement of the response of H(s) to

I x(t) and of 1(z) to {, , at the sampling instants. The conversion is

described by -a.A

n b. n b. (l-e )
H(s) = - 2(Z) = (W6

s + a. -a.A 12-
i=l 1 i=l

a. (1- e z- 1)

£ 3. ImRulse- Invariant Conversion

When this technique is used the response of E(s) to x*(t) coincides

with that of P'"() to {x } (at the sampling instants). The conversion is
k

described by

n b. n Ab.

i=l s + a .z l - a A

Example: Sampling Interval A 5isM

,-- VVVV 9---- -
R=10k 12 lOOk +

1C C) 2 C = C 10OO1pf

__2 IX1

9I x 109 -

(s -. ; - - ---- - -

1 50
s- + (1.2 x 10 ) s + ( x 10')

|

1 x IC" 0.025
(s+9009.8)(s+li,990.2) - =(z-.95595)(z-0.57410) y1
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9805.8 9805.8 0.047941z 0.037628z

s+9009.8 s+110990.2 (z-0.95595) (z-0.57410) b (DO

- pAz)= 0.049029z 0.049029zb

3 (z-0.95595) z-0. 57410

Rtmark: In 'IGRA.M'. conversion techniques I ind 2 have been programmed.

However, the present setting iZTS=1 (see page 44) leads to logarithmic

conv'ers ion. ,

I -
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